Газетная бумага производится в рулонах размерами от 40 см до 1.96 м шириной и от 0.9 до 1.25 м в диаметре.
Вес рулона зависит от формата и варьируется от 200 до 1200 кг. Плотность производимой бумаги - от 42 до 54 г на кв. м. Позволяет печатать как черно-белые, так и цветные издания.
Неизменный, контролируемый вес базируется на идеальном распределении волокна, гарантируя равные физические характеристики полотна.
Высокие оптические характеристики позволяют производить двухстороннюю печать без просвечивания изображений.
Газетная бумага вырабатывается из высококачественных полуфабрикатов с использованием передовой технологии и современного оборудования, что позволяет производить бумагу, отвечающую высоким мировым стандартам и подходящую для работы на самых современных печатных машинах.
Основными полуфабрикатами в производстве газетной бумаги являются целлюлоза сульфатная беленая из хвойных пород древесины и химико-технологическая древесная масса. Отбелка бумажной массы производится перекисью водорода.
Газетная бумага - превосходные визуальные характеристики, высокая стойкость к размыву изображения, отличные печатные качества позволяют использовать эту бумагу для печати текста газет.
Бумага офсетная - бумага чистоцеллюлозная или с содержанием древесной массы, обладающая высокой устойчивостью к деформации под воздействием влаги при офсетной печати.
Бумага без покрытия (офсетная бумага) применяется для печати иллюстрированных изданий (как однокрасочных, так и многокрасочных), журналов, книг, газет. При производстве этой бумаги используется поверхностная проклейка - нанесение на поверхность бумаги тонкого слоя проклеивающих веществ (с массой покрытия до 6 г/м2) для обеспечения высокой прочности поверхности бумаги, предохраняющей ее от выщипывания отдельных волокон липкими красками, а также для уменьшения деформации бумаги при увлажнении, что необходимо для обеспечения точного совпадения красок в процессе многокрасочной печати.
Кюмлюкс Офсет. Чистоцеллюлозная бумага для офсетной печати повышенной белизны, без покрытия.
Озон. Чистоцеллюлозная бумага без покрытия. Обладает высокими показателями белизны.
Юнион Офсет. Чистоцеллюлозная офсетная бумага без покрытия для многокрасочной офсетной печати.
Юнион Принт. Чистоцеллюлозная бумага без покрытия для многокрасочной офсетной печати.
Юнион Принт М. Бумага с основой, изготовленной из механической целлюлозы. Превосходные печатные свойства и высокие показатели толщины и пухлости.
Юнион Принт СЦ. Немелованная суперкаландрированная высокоглянцевая офсетная бумага с содержанием древмассы.
Краткие исторические сведения о создании промышленности синтетических каучуков. Эмульсионный способ производства синтетических каучуков
Исследованиями в области получения синтетического каучука на грани 19–20 вв. занимались многие научные лаборатории мира. Этому способствовал не только бурный рост потребления натурального каучука, но географические факторы. Страны, удаленные от т.н. «пояса каучука» – экваториальной зоны, попадали в зависимость от импорта.
Впервые каучукоподобное вещество при обработке изопрена (2-метилбутадиена-1,3) соляной кислотой получил в 1879 французский химик Г.Бушарда. Русский химик И.Кондаков (г.Юрьев) синтезировал эластичный полимер из диметилбутадиена в 1901. Первые промышленные партии синтетического каучука – диметилкаучука – были выпущены на основе разработок Кондакова в 1916 в Германии. Было получено около 3000 т синтетического каучука, из которого изготовляли аккумуляторные коробки для подводных лодок, однако широкого распространения диметилкаучук не получил и его производство было прекращено.
Основателем первого в мире крупномасштабного производства синтетического каучука по праву считается русский ученый С.В.Лебедев, посвятивший проблеме полимеризации диенов значительную часть своей научной деятельности. Он впервые получил синтетический бутадиеновый каучук в 1910. А магистерская работа Лебедева, посвященная исследованию кинетики полимеризации дивинила (бутадиена-1,3) и его производных, в 1914 была награждена премией Российской Академии наук. К процессу полимеризации бутадиена Лебедев вернулся в 1932, когда правительство СССР объявило конкурс на разработку промышленного производства синтетического каучука. Лебедевым и его сотрудниками был успешно разработан недорогой и эффективный метод. В качестве катализатора полимеризации бутадиена было предложено использовать металлический натрий, и полимер, полученный по данному методу, носит название натрий-бутадиеновый каучук. Настоящей находкой был одностадийный способ получения бутадиена из этилового спирта на смешанном цинкалюминиевом катализаторе:
2CH3CH2OH ® 2H2O + CH2=CH–CH=CH2 + H2
В условиях аграрного в то время Советского Союза использование в качестве исходного продукта этанола, получаемого из растительного сырья, значительно удешевляло производство.
Благодаря работам Лебедева промышленное широкомасштабное производство синтетического каучука начато в Советском Союзе в 1932 – впервые в мире (следующей была Германия, которая начала производить синтетический каучук только в 1936). Значение этого события трудно переоценить: возможность оснастить отечественную технику шинами собственного производства сыграла важную роль в победе над фашистской Германией.
С 1932 и вплоть до 1990 СССР по объемам производства синтетического каучука занимал первое место в мире. И сегодня Россия сохраняет позиции экспортера мирового значения. На внутреннем рынке остается примерно половина продукции. Основными потребителями синтетического каучука являются шинные заводы, а около 40 процентов каучука идет на широкий ассортимент резинотехнических изделий (более 50 000), среди которых наиболее заметное место занимают технические изделия из мягкой резины, подошвы для обуви, ленточные транспортеры, разнообразные трубы и шланги всех видов, электроизоляция, герметики, клеи, краски на латексной основе и т.д.
Основными преимуществами полимеризации в эмульсии перед полимеризацией в массе мономера (жидкофазной полимеризацией) заключается в том, что процесс протекает с большей скоростью и его можно организовать по непрерывной схеме. Кроме этого процесс хорошо регулируется, так как тепло реакции отводится равномерно, и получаемый полимер имеет более высокий молекулярный вес, более однороден по структуре и качеству. В зависимости от температуры, при которой протекает реакция полимеризации в эмульсии, различают высокотемпературную и низкотемпературную эмульсионную полимеризацию. Низкотемпературные эластомеры обладают более высокими физико-механическими показателями по сравнению с высокотемпературными.
Бутадиен-стирольный каучук наиболее широко используемый синтетический каучук. Этот сополимер состоит из двух мономеров: стирола и бутадиена. Базовая технология производства была изобретена в 1927 году в Германии. Активная катализаторная система сшивала молекулы мономеров, которые находились в виде водной эмульсии, и образовывала бутадиен-стирольные (α-метилстирольные) звенья. Эмульсия образовывалась под действием поверхностно-активных веществ или мыла. Данный процесс был назван эмульсионной полимеризацией.
Получение бутадиен-стирольного каучука по технологии высокотемпературной эмульсионной полимеризации
Мономеры образуют эмульсию в воде под действием поверхностно-активных веществ, и реакция протекает при температуре 50оС. При данной температуре конверсия происходит на 5-6% в час, и процесс полимеризации останавливают при 70-75%, так как более глубокая конверсия может вызвать ухудшение физических свойств. Завершение полимеризации (обрыв роста цепи) осуществляется добавлением ингибитора, таким как гидрохинон, который быстро реагирует с радикалами и окисляющими агентами.
Ингибитор разрушает любой оставшийся инициатор (катализатор) и реагирует со свободными полимерными радикалами. Не прореагировавшие мономеры затем удаляются; сначала испарением при атмосферном давлении с последующим понижением давления удаляется бутадиен, затем стирол отгонкой низкокипящих фракций водяным паром в колонне.
Дисперсия антиоксиданта добавляется для защиты продукта от окисления. При добавлении соляного раствора латекс частично коагулирует, а затем полностью коагулирует под воздействием серной кислоты. Коагулированные крупицы затем моют, сушат и упаковывают для отгрузки.
Стандартные пропорции эмульсионного бутадиен-стирольного каучука составляют следующее соотношение:
Наименование М.ч.
Бутадиен 5.00
Стирол 25.00
N-додецил меркаптан 0.50
Пероксидисульфат кальция 0.30
Хлопья мыла 5.00
Вода 180.00
Получение бутадиенстирольного каучука по технологии низкотемпературной эмульсионной полимеризации.
Основная разница между двумя процессами эмульсионной полимеризации (высокотемпературной и низкотемпературной) в системе инициации. Используя более активную систему инициации, полимеризация может быть осуществлена при 5оС с высоким процентом конверсии. Для инициирования процесса используется высокоэффективная окислительно-восстановительная система. Низкотемпературную полимеризацию останавливают при 60% конверсии.
При понижении температуры эмульсионной сополимеризации бутадиена со стиролом от 960С до -170С в сополимере повышается содержание 1,4-транс-звеньев с 51 до 80% и снижается содержание 1,2-звеньев. При пониженной температуре образуется менее разветвленный сополимер с меньшей полидисперсностью.
Общие сведения, свойства, применение шеллака
Шеллак – это натуральная смола животного происхождения. Ее получают из женских особей насекомых (щитовки), распространенных в Восточной Индии и Таиланде. Они являются вредителями и живут на некоторых видах кустарников.
Секрет, выделяемый щитовками, покрывает ветки кустарников и защищает прикрепленные к ним яйца насекомых, которые размножаются дважды в год. В нем содержится около 60–80 % чистого шеллака и 4–6 % мастики. Путем очистки и осветления из него получают сырье для производства лаков.
Шеллак находит применение в фармацевтической промышленности (глазурь, покрывающая драже), при изготовлении изолирующих красок, политуры для древесины, в производстве отделочных материалов, жевательной резинки, чернил, туши и многого другого.
Шеллак применяют для изоляции просвечивающих сквозь краску пятен воды, ржавчины, копоти и т.д. на любых впитывающих поверхностях стен и потолков (штукатурка, обои, древесина). Свойства:
- имеет хорошую укрывистость и натуральный белый цвет;
- быстро высыхает;
- обладает изолирующими свойствами;
- прост в использовании;
- изготовлен из натурального сырья.
Способ применения. По возможности удалить имеющиеся загрязнения (счистить или смыть). Перед использованием изолирующую грунтовку размешать и в не разведенном виде нанести на сухую, чистую поверхность.
Сильно впитывающие или очень загрязненные поверхности обработать повторно после высыхания. Через 12 часов прогрунтованную поверхность можно окрашивать, например, краской на основе казеина и мраморной пудры.
Характеристика монометаллических, биметаллических и полиметаллических руд
По числу содержащихся металлов различают руды монометаллические (только один металл целесообразен для извлечения), биметаллические (оба металла доступны для извлечения), полиметаллические (извлекается свыше двух металлов).
В качестве примеров монометаллических руд можно назвать хромовые, железные, золотосодержащие; биметаллическихмедно-молибденовые,свинцово-цинковые; полиметаллических - алтайские колчеданные руды, содержащие свинец, цинк, медь, серебро и другие, саксонские руды, содержащие кобальт, никель, серебро, висмут, уран и т. д.
Металлургические методы повышения качества стали
Разработан ряд эффективных способов повышения качества стали непосредственно в металлургическом производстве. Эти способы основаны, во-первых, на более полном удалении из сталей газов и вредных неметаллических включений и, во-вторых на изменении химического состава сталей за счет ввода в них специальных легирующих элементов, улучшающих различные свойства сталей.
В выплавленной стали всегда содержится определенное количество газов и неметаллических включений. Содержание газов даже в сотых и тысячных долях процента существенно снижает механические и другие свойства стали.
Неметаллическими включениями, содержащимися в стали, являются соединения железа, кремния, марганца и др. Основными металлургическими способами снижения содержания газов и неметаллических включений в стали являются: электрошлаковый ее переплав, рафинирование синтетическим шлаком, вакуумная дегазация, вакуумно-дуговой переплав, переплав в электроннолучевых печах и др. Снижение в стали неметаллических включений достигается также изменением сочетания и последовательности введения раскислителей.
При электрошлаковом переплаве из металла, подлежащего обработке, вначале изготавливают электроды, которые затем опускают в сой рабочего флюса, обладающего высоким сопротивлением. При прохождении электрического тока рабочий флюс плавится и образуется шлак, который выделяет тепло. Проходя через жидкий шлак, капли металла очищаются от вредных примесей и образуют высококачественный слиток. Этот метод целесообразно применять при получении высококачественных шарикоподшипниковых сталей, жаропрочных сплавов, изготовлении деталей турбин и др.
Сущность обработки металла синтетическим шлаком заключается в том, что жидкую сталь из плавильной печи выливают в ковш со специальным синтетическим шлаком с большой высоты. При бурном перемешивании шлак всплывает, сталь получается чистой. Рафинирование жидким синтетическим шлаком в ковше улучшает макроструктуру стали, удаляет до 70% серы. Этот способ нашел широкое применение при обработке конвертерной, мартеновской стали, а также электрометалла.
Вакуумная дегазация- один из наиболее распространенных способов повышения качества стали- заключается в удалении из стали водорода, кислорода и азота.
При вакуумировании резко повышаются механические свойства сталей. Основными способами вакуумной обработки являются вакуумирование в ковше, вакуумирование струи металла при переливе из ковша в ковш или при заливке в изложницу и др.
Установлено, что при вакуумировании струи содержание водорода в металле снижается на 60-70%, а содержание азота- до 40%. В результате взаимодействия с углеродом металл очищается от кислородных оксидных включений.
Одним из наиболее распространенных способов вакуумирования является вакуумно-дуговой переплав в печах с расходуемым электродом. При этом выплавленную сталь переплавляют повторно в вакуумном пространстве с помощью электрической дуги. В результате оплавления металла в вакууме происходит дегазация и сталь приобретает новые, более высокие механические свойства.
Сущность вакуумирования в электроннолучевых печах заключается в том, что на переплавляемый металл, находящийся в вакуумной камере, направляют электронные лучи из катодов. В процессе воздействия высокой температуры металл расплавляется и рафинируется в вакууме.
Существенное влияние на свойства сталей оказывает легирование- намеренное введение в состав сплава соответствующих компонентов. Это приводит к изменению не только механических, химических и технологических, но и специальных свойств сталей. Основными легирующими элементами являются: кремний, марганец, никель, хром, вольфрам, алюминий, молибден, ванадий, титан, кобальт, медь и другие металлы.
Различные легирующие элементы, водимые в сталь, неоднозначно влияют на ее свойства. Так, кремний является эффективным раскислителем и применяется при получении «спокойной» стали. Как легирующий элемент вводится в сталь для повышения ее прочности, стойкости к коррозии и жаростойкости.
Марганец - важнейший компонент стали. Применение его как легирующего элемента способствует повышению прокаливаемости стали характеризующей глубину закаленной зоны при термической обработке. При введении в сталь 10-12% марганца она размагничивается. Никель повышает прочность и ударную вязкость стали, увеличивает ее прокаливаемость и сопротивление коррозии. Хром повышает твердость и прочность, сохраняет ударную вязкость сталей, способствует сопротивлению на истирание, резко увеличивает стойкость к коррозии. При введении в сталь более 10% хрома она становится нержавеющей. Вольфрам повышает твердость легированных сталей и улучшает режущие свойства инструментальной стали. Алюминий повышает жаростойкость и коррозийную стойкость стали, а молибден- прочность, упругость, износостойкость и ряд специальных свойств стали. Ванадий повышает твердость, прочность и плотность стали.
На свойства стали влияет углерод, входящий в состав стали. С увеличением содержания углерода до 1,2% твердость и прочность сталей повышается, но снижается пластичность и ударная вязкость; при этом ухудшаются такие технологические свойства сталей, как ковкость, свариваемость, обработка резанием и др., одновременно улучшаются литейные свойства сталей.
Химический состав легированной стали является основой для установления ее марок по ГОСТ. Классификация по химическому составу является самой важной для промышленности, которая выплавляет и применяет легированную сталь по маркам ГОСТ. Обозначение марок легированной стали производится по буквенно-цифровой системе. Легирующие элементы обозначаются следующими буквами: С — кремний, Г — марганец, X — хром, Н — никель, М — молибден, В — вольфрам, Р — бор, Ю — алюминий, Т — титан, Ф — ванадий, Ц — цирконий, Б — ниобий, А — азот, Д — медь, П — фосфор, К — кобальт, Ч — редкоземельные элементы и т. д.
Каждая марка составляется из сочетания букв и цифр. Первые две цифры для конструкционных марок стали обозначают содержание углерода в сотых процента. Содержание легирующих элементов, если оно превышает 1 %, ставится после соответствующей буквы в целых единицах (проценты), например, марка 12ХНЗ означает, что в стали содержится в среднем 0,12% С, около 1%Сг и около 3% Ni; марка 18ХГТ — в среднем содержит около 0,18% С, около 1% Сг, около 1% Мп и около 0,1% Ti; марка 38Х — около 0,38% С и около 1 % Сг. Буква А в конце марки определяет высококачественную сталь с пониженным содержанием в ней вредных примесей — фосфора и серы. Например, марка стали для азотирования 38ХМЮА расшифровывается так: в среднем около 0,38% С, около 1% Сг, около 1% А1, около 0,2% Мо, до 0,03% S, до 0,035% Р.
У марок инструментальной легированной стали содержание углерода обозначается только одной цифрой впереди и показывает число десятых процента углерода, например сталь марки 9ХС содержит в среднем около 0,9% С, около 1 % Сг и около 1,4% Si.
В случае содержания в инструментальной стали углерода более 1%, например около 1,5% (сталь, содержащая около 1,5% Сг и около 1,4% Мп), для сокращения и удобства маркировки в марке углерод не упоминается.
Некоторые марки легированной стали в соответствующих ГОСТах выделены в особые группы и обозначаются буквами, которые ставятся впереди: Ш — шарикоподшипниковая сталь; Р — быстрорежущая сталь; Э — сталь электротехническая тонколистовая кремнистая; Е — сталь для постоянных магнитов.
Стали, которые еще не вошли в ГОСТ, маркируются разнообразно, например завод «Электросталь» маркирует свои нестандартные стали буквами ЭИ и ЭП и порядковыми номерами, например ЭИ437А, ЭП54 и т. д.; по этим обозначениям судить о химическом составе стали нельзя.
Кроме того, по степени легирования стали классифицируются на низко-, средне- и высоколегированные, а также на цементуемые и подвергаемые закалке и отпуску.
Общие сведения о ртути: свойства, применение
Ртуть - химический элемент. Это очевидно хотя бы потому, что ртуть - единственный металл, находящийся в жидком состоянии в условиях, которые мы обычно называемым нормальными. Ртуть – Тяжёлая жидкость серебристо-белого цвета. В таких условиях ртуть способна испаряться и формировать ртутную атмосферу. Именно эти свойства определили особое положение ртути в нашей жизни. Ртуть оказала человечеству огромные услуги. Много веков она находит применение в самых разнообразных сферах человеческой деятельности - от киноварной краски до атомного реактора. На использовании различных свойств ртути были созданы самостоятельные отрасли промышленности, в том числе, добыча золота методом амальгамации, производство газоразрядных ртутных ламп, химических источников тока, хлора и каустической соды. Ртуть применяется в медицине, фармацевтике, стоматологии. Она служила теплоносителем в одном из первых реакторов на быстрых нейтронах.
Ртуть причастна к научным открытиям и техническим достижениям: изобретение Торричелли ртутного барометра, Амантоном и Фаренгейтом ртутного термометра, опыты Паскаля по изучению атмосферного давления, открытие сверхпроводимости Камерлинг-Оннесом, получившего в 1913 г. Нобелевскую премию, знаменитый опыт Майкельсона-Морли, доказавший отсутствие эфирного ветра при движении Земли, эксперименты Дж. Франка и Г. Герца, подтвердившие теорию строения атома Н. Бора, создание вакуум-насоса Ленгмюром и другое. Пары ртути были первым проявителем в фотографическом деле, который использовался Даггером. Особое значение ртуть имела для развития аналитической химии и открытия многих химических элементов и их соединений. В 1922 г. Нобелевской премии был удостоен чешский химик Я. Гейровский, создавший полярографический метод химического анализа, где ртуть играет далеко не последнюю роль.
Однако ртуть может быть не только полезной, но и вредной для всего живого. В малых количествах она всегда присутствует в окружающей нас среде. При определенных условиях, особенно в результате промышленной и бытовой деятельности людей, ее концентрации в среде обитания могут заметно возрастать, что способно оказать негативное воздействие на наше самочувствие и состояние здоровья. Одна из самых известных экологических трагедий 20 столетия - болезнь Минамата - вызвана загрязнением окружающей среды ртутью.
Ртуть (Нg) -химический элемент II группы периодической системы элементов Д.И. Менделеева; атомный номер 80, относительная атомная масса 200,59. Ртуть в обычных условиях представляет собой блестящий, серебристо-белый тяжелый жидкий металл. Удельный вес ее при 20°С 13,54616 г/см3; температура плавления равна -38,89°С, кипения 357,25°С. При замерзании (-38,89°С) она становится твердой и легко поддается ковке.
Даже в обычных условиях ртуть обладает повышенным давлением насыщенных паров и испаряется с довольно высокой скоростью, которая с ростом температуры увеличивается. Это приводит к созданию опасной для живых организмов ртутной атмосферы. Например, при 24°С атмосферный воздух, насыщенный парами ртути, может содержать их в количестве около 18 мг/м3; такой уровень в 1800 раз превышает ПДК (предельно допустимую концентрацию) ртути в воздухе рабочей зоны и в 60000 раз ПДК в атмосферном воздухе. Ртуть способна испаряться через слои воды и других жидкостей.
При действии на ртутные пары вольтовой дуги, электрической искры и рентгеновских лучей наблюдаются явления люминесценции, флюоресценции и фосфоресценции. В вакуумной трубке между ртутными электродами при электрических разрядах получается свечение, богатое ультрафиолетовыми лучами, что используется в технике при конструировании ртутных ламп. Еще одно замечательное свойство ртути связано с тем, что при растворении в ней металлов образуются амальгамы - металлические системы, одним из компонентов которых является ртуть. Они не отличаются от обычных сплавов, хотя при избытке ртути представляют собой полужидкие смеси. Соединения, получающиеся в результате амальгамирования, легко разлагаются ниже температуры их плавления с выделением избытка ртути, что нашло широкое применение при извлечении золота и серебра из руд. Амальгамированию подвержены металлы, смачиваемые ртутью. Стали, легированные углеродом, кремнием, хромом, никелем, молибденом и ниобием, не амальгамируются.
Ртуть - весьма агрессивна по отношению к различным конструкционным материалам, что приводит к коррозии и разрушению производственных объектов и транспортных средств. Так, в 1970-е гг. довольно актуальной была проблема загрязнения самолетов, в конструкции которых попадала ртуть, вызывающая жидкометаллическое охрупчивание алюминиевых сплавов. Самолеты направлялись в капитальный ремонт и даже списывались с эксплуатации.
В соединениях ртуть проявляет степень окисления +2 и +1. В специальной литературе в таких случаях обычно указывается соответственно Hg(ll) или Hg(l). Обладая высоким потенциалом ионизации, высоким положительным окислительным потенциалом, ртуть является относительно стойким в химическом отношении элементом. Это обусловливает ее способность восстанавливаться до металла из различных соединений и объясняет частые случаи нахождения ртути в природе в самородном состоянии.
На воздухе ртуть при комнатной температуре не окисляется. При нагреве до температур, близких к температуре кипения (300-350°С), она соединяется с кислородом воздуха, образуя красный оксид двухвалентной ртути НgО, который при дальнейшем нагревании (до 400°С и выше) снова распадается на ртуть и кислород. Желтый оксид ртути НgО получается при добавлении щелочей к водному раствору соли Hg(ll). Существует и оксид ртути черного цвета (Нg2О), нестойкое соединение, в котором степень окисления ее равна +1. В соляной и разбавленной серной кислотах и в щелочах ртуть не растворяется. Но она легко растворяется в азотной кислоте и в царской водке, а при нагревании в концентрированной серной кислоте. Металлическая ртуть способна растворяться в органических растворителях, а также в воде, особенно при отсутствии свободного кислорода. Растворимость ее в воде зависит также от рН раствора. Минимальная растворимость наблюдается при рН=8, с увеличением кислотности или щелочности воды она увеличивается. В присутствии кислорода ртуть в воде окисляется до ионной формы Нg2+ (создавая концентрации до 40 мкг/л).
Ртуть реагирует с галогенами (хлор, йод, фтор, бром), серой, селеном, фосфором и другими неметаллами. Практическое значение имеют йодная ртуть HgJ, хлористая ртуть (каломель) Нg2Cl2 и хлорная ртуть (сулема) НgCl2. При взаимодействии ртути с серой образуется сульфид ртути HgS - самое распространенное в природе ее соединение, в форме которого добывается почти вся ртуть. Оно известно в трех модификациях: красная (идентичная минералу киноварь), черная (черный сульфид ртути, или метациннабарит) и - р-киноварь (в природных условиях не обнаружена). Из других соединений ртути известны такие, как гремучая ртуть Hg(ONC)2, нитрат Нg(NO3)2, сульфат (HgSO4) и сульфит (HgSO3) ртути, красный и желтый йодид ртути и др.
Существует большое количество ртутьсодержащих органических соединений, в которых атомы металла связаны с атомами углерода. Химическая связь углерода и ртути очень устойчива. Она не разрушается ни водой, ни слабыми кислотами, ни основаниями. С позиций опасности для живых организмов (т. е. с позиций токсикологии - науки о ядах) наиболее токсичными из металлоорганических соединений ртути являются алкилртутные соединения с короткой цепью, прежде всего, метилртуть.
Ртуть применяется в изготовлении термометров, парами ртути наполняются ртутно-кварцевые и люминесцентные лампы. Ртутные контакты служат датчиками положения. Кроме того, металлическая ртуть применяется для получения целого ряда важнейших сплавов.
Ранее различные амальгамы металлов, особенно амальгамы золота и серебра, широко использовались в ювелирном деле, в производстве зеркал и зубных пломб. В технике ртуть широко применялась для барометров и манометров. Соединения ртути использовались как антисептик (сулема), слабительное (каломель), в шляпном производстве и т.д., но в связи с её высокой токсичностью к концу XX века были практически вытеснены из этих сфер (замена амальгамирования на напыление и электроосаждение металлов, полимерные пломбы в стоматологии).
Сплав ртути с таллием используется для низкотемпературных термометров.
Металлическая ртуть служит катодом для электролитического получения ряда активных металлов, хлора и щелочей, в некоторых химических источниках тока (например, ртутно-цинковых — тип РЦ), в эталонных источниках напряжения (Вестона элемент). Ртутно-цинковый элемент (эдс 1,35 Вольт) обладает очень высокой энергией по объёму и массе (130 Вт/час/кг, 550 Вт/час/дм).
Ртуть используется для переработки вторичного алюминия и добычи золота (см. амальгамная металлургия).
Ртуть также иногда применяется в качестве рабочего тела в тяжелонагруженных гидродинамических подшипниках.
Ртуть используется в качестве балласта в подводных лодках и регулирования крена и дифферента некоторых аппаратов. Перспективно использование ртути в сплавах с цезием в качестве высокоэффективного рабочего тела в ионных двигателях.
Ртуть входит в состав некоторых биоцидных красок для предотвращения обрастания корпуса судов в морской воде. Ртуть-203 (T1/2 = 53 сек) используется в радиофармакологии. Также используются и соли ртути:
- Иодид ртути используется как полупроводниковый детектор радиоактивного излучения.
- Фульминат ртути («Гремучая ртуть») издавна применяется в качестве инициирующего ВВ (Детонаторы).
- Бромид ртути применяется при термохимическом разложении воды на водород и кислород (атомно-водородная энергетика).
Некоторые соединения ртути применяются как лекарства (например, мертиолят для консервации вакцин), но в основном из-за токсичности ртуть была вытеснена из медицины (сулема, оксицианид ртути — антисептики, каломель — слабительное и др.) в середине-конце XX века.