Ежегодно в мире увеличивается число международных симпозиумов, конференций и встреч ученых и специалистов, рассматривающих состояние и перспективы развития этого направления энергетики.
Значительное внимание этой проблеме уделяется организациями, входящими в ООН, такими как ЮНЕСКО, ЕЭК, ЮНЕП, ЮНИДС, а также другими межправительственными и неправительственными международными организациями. Выделяются значительные средства на работы в области НВИЭ из целевых ассигнований ЕЭС, Европейского фонда национального развития, Евроатома и других организаций.
Приближающаяся угроза топливного “голода”, а также загрязнение окружающей среды и тот факт, что прирост потребности в энергии значительно опережает прирост ее производства, вынуждает многие страны с новых позиций обратить внимание на энергию солнечных лучей, ветра, текущей воды, тепла земных недр, то есть на энергию, большая часть которой растворяется в пространстве, не принося ни вреда, ни пользы.
В настоящее время на производство тепла и электричества расходуется ежегодно количество тепла, эквивалентное примерно 1000 трлн. баррелей нефти, сжигание которых сильно засоряет атмосферу Земли.
Учитывая все более обостряющиеся проблемы защиты окружающей среды, сделана попытка оценки предельных значений возможного использования энергии. В одном из прогнозов отмечается, что для предотвращения катастрофического загрязнения окружающей среды и сохранения разнообразия биологических вдов на Земле потребление энергии на одного человека в среднем не должна превышать 80 ГДж/год.
В настоящее время в США оно составляет 280, в Великобритании 150 ГДж.
В одном из прогнозов, разработанных в Испании, проведена оценка возможного потенциала использования НВИЭ в мире. Технический гидропотенциал мира оценен в 1350 ГВт.
По прогнозу развития использования НВИЭ, выполненному в США указывается, что ресурсы НВИЭ в США более чем в 500 раз превышают объемы их потребления и более чем в 10 раз ресурсы органического и ядерного топлива.
К2030 г. НВИЭ могут дать энергию, эквивалентную 50-70 современного уровня потребления энергии. НВИЭ, преимущественно биомасса и гидроресурсы, удовлетворяют сейчас примерно 20% мировой потребности в энергии, а энергия биомассы – 35% энергетических потребностей развивающихся стран.
Гидроэнергия и биомасса удовлетворяют более 50% энергетических потребностей Норвегии. В промышленно развитых странах потребность в низкотемпературном тепле составляет 30-50% общей потребности в энергии, а в развивающихся странах – еще больше. Через несколько десятилетий с помощью солнечной энергии будет производиться нагрев почти всей требующейся воды, а пассивные системы отопления и охлаждения зданий снизят потребность в энергии для этих целей примерно на 80%.
На Кипре, в Израиле, Японии и Иордании 25-65% потребности в горячей воде обеспечивают гелиотермические установки.
В конце1989 г. мощность электрогенерирующих установок в странах ЕС на НВИЭ составила 1718 МВт. Например, в Португалии мощность установок на биомассе составила 201 МВт, на городских и промышленных отходах в Германии – 194, В Нидерландах - 164 МВт. В Италии мощность геотермальных установок составила 521 МВт (всего в странах ЕС 559 МВт). Франция – единственная страна, обладающая крупной электростанцией 240 МВт. Дания обладает 77% (253 МВт) всех ветроустановок ЕС, Нидерланды – 40 МВт.
В странах ЕС реализовалась третья четырехлетняя программа в области НВИЭ (1990 – 1994 гг.), принципиальной целью которой являлось повышение конкурентоспособности Европейской промышленности высоких технологий на мировом рынке, в сравнении с промышленностью США и Японии.
Важнейшим достижением первых двух программ НИОКР были признаны разработка проекта солнечной электростанции башенного типа, строительство 15 гелиоэнергетических установок мощностью 30 – 300 кВт внедрение технологий по использованию энергии биомассы и геотермальной энергии.
В мире эксплуатируется свыше 100 тыс. ветроэнергетических установок общей мощностью 2500 МВт, в том числе более 16 тыс. в США.
Согласно прогнозу МИРЭС, на долю НВИЭ в2020 г. будет приходиться 1150 – 1450 млн. т условного топлива (5,6 – 5,8% общего энергопотребления). При этом прогнозируемая доля отдельных видов НВИЭ составит: биомасса – 35%, солнечная энергия – 13%, гидроэнергия – 16%, ветроэнергия – 18%, геотермальная энергия – 12%, энергия океана – 6%.
Ветер – один из нетрадиционных источников энергии. Ветер рассматривается специалистами как один из наиболее перспективных источников энергии, способный заменить не только традиционные источники, но и ядерную энергетику. Выработка электроэнергии с помощью ветра имеет ряд преимуществ:
- Экологически чистое производство без вредных отходов;
- Экономия дефицитного дорогостоящего топлива (традиционного и для атомных станций);
- Доступность;
- Практическая неисчерпаемость.
В ближайшем будущем ветер будет скорее дополнительным, а не альтернативным источником энергии. По оценкам зарубежных специалистов (в частности США), достаточная конкурентноспособность ветроэнергетических установок (ВЭУ) по сравнению с традиционными типами электростанций может быть обеспечена при сокращении стоимости ВЭУ примерно в два раза и повышении их надежности в 3-5 раз. Во многих странах мира ассигнуются значительные государственные средства на НИОКР в области создания ВЭУ. Особое внимание при проведении этих работ уделяется повышению надежности установок, их безопасности, снижению шума, уменьшению помех теле - и радиокоммуникаций.
В настоящее время можно выделить следующие сановные направления использования энергии ветра:
- Непосредственная выработка механической или тепловой энергии (ветротепловые, ветронасосные, ветрокомпрессорные, мельничные и т.п. установки);
- Удовлетворение потребностей в электроэнергии мелких предприятий, фирм, учреждений и т.п.
В Калифорнии (США) действует 15 000 ВЭУ, обеспечивающих электроэнергией жителей Сан-Франциско. На конец1993 г. в мире было приблизительно 20 000 ВЭУ, вырабатывающих 3000 МВт/ч электроэнергии в год. В 80-х годах удельная стоимость ВЭУ составляла 3000 дол/кВт, а стоимость вырабатываемой электроэнергии более 20 центов/(кВт / ч). В дальнейшем за счет усовершенствования ВЭУ удельная стоимость снизилась до 1000-1200 дол/кВт, а стоимость производимой электроэнергии до 7-9 центов/(кВт-ч). Для сравнения на новых ТЭС, работающих на газе и угле, она составляет 4-6 центов/(кВт-ч). Многие американские и европейские компании, многие правительства успешно продвигают ветровую технологию, понимая ее значимость.
В настоящее время наибольшее распространение получают ВЭУ мощностью 300-750 кВт по сравнению с ранее применявшимися ВЭУ мощностью 100кВт. В новых конструкциях ВЭУ используется аэродинамический профиль ветрового колеса, изготавливаемого из синтетических материалов. Насыщается конструкция многими электронными устройствами, включая контроль за изменением скорости ветра, обеспечивающими эффективность использования ветра. Новые конструкции лучше приспособлены к режиму ветра, в1994 г. стоимость вырабатываемой электроэнергии уже составила 4-5 центов/(кВт-ч).
В США планируется использовать энергию ветра (кроме Калифорнии) в штатах Миннесота, Монтана, Нью-Йорк, Орегон, Техас, Вермонт, Вашингтон, Висконсин и др. ВЭУ занимают в настоящее время 0,6% площади страны. При использовании ветра в 48 штатах может быть выработано до 20% потребности в энергии США. Теоретические расчеты показывают, что в трех штатах: Северная и Южная Дакота и Техас потребность в электроэнергии может быть полностью обеспечена за счет энергии ветра.
В Северной Германии стоимость вырабатываемой ВЭУ электроэнергии составляет 13 центов/(кВтч). В Дании общая мощность ВЭУ вскоре может достигнуть мощности ВЭУ Германии и Великобритании, вместе взятых и превысит 1000 МВт к2005 г.
На Украине с помощью американских фирм предусматривается строительство ВЭУ общей мощностью 500 МВт.
Среди стран, которые еще имеют возможность развития ветроэнергетики, следует указать Аргентину, Канаду, Китай, Россию, Мексику, Южную Америку и Тунис, где возможно за счет энергии ветра покрывать до 20% потребности в электроэнергии.
Наконец, 20 малых субтропических стран, где потребности в электроэнергии удовлетворяются за счет дорогих дизель-генераторных установок, имеют возможность развивать использование ветра.
Развитие ветроэнергетики как источника энергии в некоторых странах сталкивается с противодействием. С одной стороны, ветровые фермы занимают большие площади. С другой стороны, возникают проблемы, связанные с изменением ландшафта при строительстве ВЭУ. Площади, занимаемые ВЭУ, могут быть использованы для сельскохозяйственных нужд. Стоимость1 газемли в зависимости от регионов может составлять от 100 до 2500 дол. и более. Опыт подсказывает, что требования сохранения эстетики в большинстве случаев могут быть решены.
Другой проблемой, связанной со строительством ВЭУ, возникшей в1994 г., стала потенциальная возможность гибели птиц на путях их миграции. Орнитологи указывают, что некоторые пути миграции птиц проходят через площади, занимаемые ВЭУ. В связи с этим возникла необходимость провести научные исследования для понимания природы и масштабов проблемы. Эксперты надеются на успешное ее решение.
Немаловажными проблемами также являются влияние уровня шума, создаваемого установкой и влияние работы ВЭУ на системы радиосвязи.
Еще одной из проблем ветроэнергетики является то, что регионы, благоприятные для использования энергии ветра, удалены от крупных индустриальных центров, а строительство новых линий электропередач потребует значительных затрат времени и средств. Так, по расчетам специалистов линия электропередачи для передачи мощностью 2000 МВт на2000 кмможет стоить 1,5 биллиона дол.
Солнечные электростанции. После энергетического кризиса1973 г. правительствами стран и частными компаниями были приняты экстренные меры по поиску новых видов энергетических ресурсов для получения электроэнергии. Таким источником в первую очередь стала солнечная энергия. Были разработаны параболоцилиндрические концентраторы. Эти устройства концентрируют солнечную энергию на трубчатых приемниках, расположенных в фокусе концентраторов. В1973 г. вскоре после начала нефтяного эмбарго был сконструирован плоский концентратор, явившийся успехом научной и инженерной мысли. Это привело к созданию первых солнечных электростанций (СЭС) башенного типа. Широкое применение эффективных материалов, электронных устройств и параболоцилиндрических концентраторов позволило построить СЭС с уменьшенной стоимостью - системы модульного типа. Началось внедрение этих систем в Калифорнии фирмой Луз (Израиль). Были подписаны контракты с фирмой Эдисон на строительство в южной Калифорнии серии СЭС.
В качестве теплоносителя использовалась вода, а полученный пар подавался к турбинам. Первая СЭС, построенная в 1984 г., имела КПД 14,5%, а себестоимость производимой электроэнергии 29 центов/(кВт-ч). В 1994 г. фирма Луз реорганизована в компанию Солел, базирующуюся в Израиле, и продолжает успешно работать над созданием СЭС, ведет строительство СЭС мощностью 200 МВт, а также разрабатывает новые системы аккумулирования энергии. В период между 1984 и 1990 г. фирмой Луз было построено девять СЭС общей мощностью 354 МВт. Последние СЭС, построенные фирмой Луз, производят электроэнергию по 13 центов/(кВт-ч) с перспективой снижения до 10 центов/(кВт-ч). Д. Миле из университета Сиднея улучшил конструкцию солнечного концентратора, использовав слежение за Солнцем по двум осям и применив вакуумированный теплоприемник, получил КПД 25--30%. Стоимость получаемой электроэнергии составит 6 центов/(кВт-ч).
Строительство первой экспериментальной установки с таким концентратором начато в1994 г. а Австралийском национальном университете, мощность установки 2 МВт.
Другим типом СЭС, получившим развитие, стали установки с двигателем Стирлинга, размещаемым в фокусе параболического зеркального концентратора. КПД таких установок "может достигать 29%. Предполагается использовать подобные СЭС небольшой мощности для электроснабжения автономных потребителей в отдаленных местностях.
ОТЭС. В перспективе можно использовать для получения электроэнергии разность температуры слоев воды в океане, которая может достигать 20°С. Станции на этой основе (ОТЭС) находятся в разработке. Первый вариант подобной установки мощностью 5 МВт проектируется в Израиле. Меньшие по мощности установки действуют в Австралии, Калифорнии и ряде других стран. Основная сложность перспективы их использования - низкая экономичность и как следствие отсутствие коммерческого интереса.
Начиная с 70-х годов правительства индустриальных стран израсходовали биллион долларов на разработки фотоэлектрических преобразователей. В Японии ежегодно выпускается 100 млн. калькуляторов общей мощностью 4 МВт, что составляет 7% мировой торговли фотоэлектрическими преобразователями. Более 20 тыс. домов в Мексике, Индонезии, Южной Африке, Шри-Ланке и в других развивающихся странах используют фотоэлектрические системы, смонтированные на крышах домов, для получения электроэнергии для бытовых целей.
Наилучшим примером использования таких систем является Доминиканская республика, где 2 тыс. домов имеют фотоэлектрические установки, сконструированные в последние 9 лет. Стоимость такой установки 2 тыс. дол.
В Шри-Ланке израсходовано 10 млн. дол на электрификацию 60тыс. домов с помощью фотосистем. Стоимость установки мощностью 50Вт, включающая фотопанель, источник света и аккумуляторную батарею, составляет 500 дол.
В будущем стоимость ycтaновки для малых систем будет снижаться, например установки с люминесцентными лампами. В Кении в течение последних лет 20 тыс. домов электрифицировано с помощью фотосистем по сравнению с 17 тыс. домами, где за это же время введено централизованное электроснабжение. В Зимбабве за счет кредита в 7 млн. дол, выделенного в1992 г., будет электрифицировано 20 тыс. домов в течение 5 лет. Мировым банком выделен кредит в 55 млн. дол. для электрификации 100 тыс. домов в Индии фотосистемами. В США стоимость1 кмраспределительных электросетей составляет 13-33 тыс. дол. Контракт на установку мощностью 500 МВт, включающую электроснабжение дома, освещение, радио, телевидение и компьютер, составляет не менее 15 тыс. дол. (включая аккумуляторную батарею). Уже имеется 50 тыс. таких установок в городах и ежегодно строится около 8 тыс. установок. Среди индустриальных стран кроме США также лидируют в использовании фотосистем в домах Испания и Швейцария.
Если производство фотосистем достигнет ежегодно 1% общей продажи энергии в мире, то их производство по сравнению с современным уровнем должно возрасти десятикратно, а увеличение до 10% этой продажи приведет к стократному росту производства фотосистем.
Для успешного внедрения фотосистем их удельная стоимость должна быть снижена в 3-5 раз прежде, чем появятся крупные энергосистемы.
Половина продажи кремния приходится на монокристаллы, поликристаллическая модификация также имеет большое будущее. Большое будущее будут иметь тонкопленочные системы, в частности на основе аморфного кремния. Некоторые образцы фотоэлектропреобразователей на основе аморфного кремния имеют КПД 10%, удельную стоимость 1 дол/Вт, стоимость получаемой электроэнергии 10-12 центов/(кВт/ч). Имеется перспектива снижения стоимости до 4 центов/(кВт /ч) к2020 г.
Итак, фотоэнергетика может стать ведущим источником энергии мировой большой индустрии. В результате создания новых технологий и повышения технического уровня продукции может быть преодолен барьер для внедрения фотоэлектрических систем, связанный с высокой их стоимостью. Так, по инициативе корпорации Енрон ведется разработка фотоэлектрической станции мощностью 100 МВт для строительства в Неваде, на которой стоимость вырабатываемой электроэнергии составит 5,5 цента/(кВт/ч).
Основными технологическими решениями по использованию энергии являются: превращение солнечной энергии в электрическую и получение тепловой энергии для целей теплоснабжения зданий.
Прямое использование солнечной энергии в условиях Крыма, для выработки в настоящее время электроэнергии, требует больших капитальных вложений и дополнительных научно-технических проработок.
В1986 г. вблизи г. Щелкино построена первая в мире солнечная электростанция (СЭС-5) мощностью 5 тыс. кВт. Эксперимент с СЭС показал реальность преобразования солнечной энергии в электрическую, но стоимость отпускаемой электроэнергии оказалась слишком высокой, что в условиях рыночной экономики является малоперспективным.
Перспективность применения фотоэлектрического метода преобразования солнечной энергии обусловлено его максимальной экологической чистотой преобразования, значительным сроком службы фотоэлементов и малыми затратами на их обслуживание. При этом простота обслуживания, небольшая масса, высокая надежность и стабильность фотоэлектропреобразователей делает их привлекательными для широкого использования в Крыму.
Основными задачами по широкому внедрению фотоэлектрических источников питания являются:
разработка научно-технических решений по повышению КПД фотоэлементов;
-применение высокоэффективных фотоэлементов с использованием концентраторов солнечного излучения.
За прошедшие годы производство электроэнергии на геотермальных электростанциях (ГеоТэс) в мире значительно выросло. Работы по изучению геотермальных источников и созданию прогрессивных систем для извлечения и практического использования геотермальной энергии ведутся в Украине и многих зарубежных странах. В последние два десятилетия выполнялись обширные программы научно-исследовательских, опытно-конструкторских и технологических работ в этом направлении. Накоплен также определенный опыт создания и многолетней эксплуатации опытно-промышленных и промышленных геотермальных установок различного назначения.
Разработка и освоение интенсивных технологий извлечения теплоносителя и создания эффективных систем использования теплоты недр является главной научной и инженерно-технической проблемой энергетики. Без создания таких технологий и установок нельзя рассчитывать на широкомасштабное использование этого энергоисточника.
Большие возможности в собственном энергообеспечении сельскохозяйственных предприятий и экономии ТЭР заложены в использовании энергии отходов сельхозпроизводства и растительной биомассы. В сельскохозяйственном производстве в качестве источников тепла можно принять любые растительные отходы, непригодные для использования по прямому назначению или не нашедшие иного хозяйственного применения.
За последнее время использование биомассы в различных ее формах (дерево, древесный уголь, отходы сельскохозяйственного производства и животных) в мире в целом снизилось.
Однако в развивающихся странах этот вид энергоресурсов составляет в среднем 20%. При этом в ряде стран Африки использование биомассы для энергетических целей равно примерно 60% общего энергопотребления, в азиатских странах- 40%, в странах Латинской Америки 0 до 30% и в ряде стран Европы, Ближнего Востока и Скверной Африки до 10%.
В ряде стран использование древесного топлива, древесного угля и сельскохозяйственных отходов поставлено на коммерческую основу. Следует отметить, что в сельских районах бывшего СССР доля использования древесного топлива весьма значительна и при переходе на новые энергоносители можно ожидать определенного роста самозаготовок.
Указанное особенно важно в странах с тропическим климатом и в крупных городах, где проблема ликвидации и одновременно энергетического использования отходов играет особенно важную роль. За прошедшие 10 дет только три страны – США, Дания и Швеция довели производство электроэнергии, но установках, использующих биомассу отходов до 400 МВт.
Значительное развитие получила переработка биомассы, основанная на процессах газификации, теролиза и получения жидких топлив. Начиная с1980 г. ежегодное производство этанола достигло, например, в Бразилии, 10 млн.л.
При переработке биомассы в этанол образуются побочные продукты, прежде всего – промывочные воды и остатки перегонки. Последние являются серьезным источником экологического загрязнения окружающей среды. Представляют интерес технологии, которые позволяют в процессе очистки этих отходов получать минеральные вещества, используемые в химической промышленности, а также применять их для производства минеральных удобрений.
Теплотворная способность сжигания 1 т сухого вещества соломы эквивалентна415 кгсырой нефти, теплотворность1 кгпшеничной соломы и сухих кукурузных стеблей равна 15,5 МДж, соевой соломы - 14,9 , рисовой шелухи - 14,3 , подсолнечной лузги - 17, 2 МДж. По этому показателю растительные отходы полеводства приближаются к дровам - 14,6-15,9 МДж/кг и превосходят бурый уголь - 12,5 МДж/кг.
Получение промышленного биогаза растительного и животного происхождения возможно за счет их сбраживания (метанового брожения) с получением метана и обеззараженных органических удобрений. Теплотворная способность1 куб. мбиогаза, состоящего из 50-80% метана и 20-50% углекислого газа, равна 10-24 МДж и эквивалентна 0,7-0,8 кгусловного топлива.
Проблемы утилизации твердых бытовых отходов (бытового мусора) остро стоят перед всеми странами. Выход мусора составляет 250-700 кгна душу населения в год, увеличиваясь на 4-6% в год, опережая прирост населения.
Решение проблемы переработки мусора найдено в использовании технологии твердофазного сбраживания на обустроенных полигонах с получением биогаза. Эта технология самая дешевая, не оперирует с токсичными выбросами и стоками.
В настоящее время в мире действуют десятки установок для получения биогаза из мусора с использованием его в основном для производства электроэнергии и тепла суммарно мощностью сотни МВт. Решается вопрос возврата для использования под застройку земель после извлечения газа. Создана модульная биоэнергетическая установка “КОБОС”. С ее помощью могут быть переработаны отходы фермы крупного рогатого скота на 400 голов и свинофермы на 3000 голов. Комплекс оборудования обеспечивает подготовку, транспортировку, сбраживание навозной массы, сбор биогаза и управление процессом.
Биогаз частично сжигается в топках котлов, подогревающих техническую воду, частично подается в дизель-генератор. Перебродившая навозная масса используется в качестве полноценного органоминерального удобрения. Выход биогаза составляет500 мкуб/сут.
ВИЭСХом разработан анаэробный биофильтр, предназначенный для производства биогаза из сточных вод сельскохозяйственного производства и коммунального хозяйства, пищевой и микробиологической промышленности.
В последние годы в связи с лавинообразным накоплением изношенных автомобильных шин, особенно в учетом ужесточения требований по их хранению (на ряде свалок возникли пожары (которые не удавалось потушить годами), активно развивается технология их сжигания.
Биогаз с высокой эффективностью может трансформироваться в другие виды энергии, при этом коэффициент его полезного использования в качестве топлива на газогенераторах может составлять до 83%. Производство биогаза в некоторых зарубежных странах уже заняло ведущее положение в энергетическом балансе сельскохозяйственного производства.
Основной источник возобновляемой энергии – солнце. Второй по величине – Мировой океан, являющийся одновременно и природным концентратором солнечной энергии. Формы аккумуляции энергии в океане разнообразны. Энергетические источники океана имеют различные по потенциалу ресурсы. Значительные энергетические возможности заключают в себе: тепловая энергия океана, течения и волны, приливы, перепады солености, биомасса.
Исследования дают основание сделать вывод, что волны в сравнении с другими возобновляемыми источниками энергии океана обладают довольно хорошими показателями, что позволит в будущем эффективно использовать их энергию.
Каждая волна моря, направляющаяся к берегу, несет с собой огромную энергию (например, волна высотой в3 мнесет около 90 кВт мощности на1 мпобережья). В настоящее время имеются реальные инженерные и технические возможности для эффективного преобразования волновой энергии в электрическую. Однако надежные волноустановки пока не разработаны. Опыт использования волновых электростанций уже имеется и в СНГ, и в других странах мира.
В перспективе энергию морских волн можно вовлечь в общий баланс энергетических ресурсов, используемых человеком в хозяйственной деятельности.
Приращение потенциальной энергий брошенного вверх тела происходит за счет убыли его кинетической энергии; при падении тела, приращение кинетической энергии происходит за счет убыли потенциальной энергии, так что полная механическая энергия тела не меняется. Аналогично, если на тело действует сжатая пружина, то она может сообщить телу некоторую скорость, т. е. кинетическую энергию, но при этом пружина будет распрямляться, и ее потенциальная энергия сбудет соответственно уменьшаться; сумма потенциальной и кинетической энергий останется постоянной. Если на тело, кроме пружины, действует еще и сила тяжести, то хотя при движении тела энергия каждого вида будет изменяться, но сумма потенциальной энергии тяготения, потенциальной энергии пружины и кинетической энергии тела опять-таки будет оставаться постоянной.
Энергия может переходить из одного вида в другой, может переходить от одного тела к другому, но общий запас механической энергии остаётся неизменным. Опыты и теоретические расчеты показывают, что при отсутствии сил трения и при воздействии только сил упругости и тяготения суммарная потенциальная и кинетическая энергия тела или системы тел остается во всех случаях постоянной. В этом и заключается закон сохранения механической энергии.
Проиллюстрируем закон сохранения энергии на следующем опыте. Стальной шарик, упавший с некоторой высоты на стальную или стеклянную плиту и ударившийся об неё, подскакивает почти на ту же высоту, с которой упал. Во время движения шарика происходит целый ряд превращений энергии. При падении потенциальная энергия переходит в кинетическую энергию шарика. Когда шарик прикоснется к плите, и он и плита начинают деформироваться. Кинетическая энергия превращается в потенциальную энергию упругой деформации шарика и плиты, причем этот процесс продолжается до тех пор, пока шарик не остановится, т. е. пока вся его кинетическая энергия не переедет в потенциальную энергию упругой деформации. Затем под действием сил упругости деформированной плиты шарик приобретает скорость, направленную вверх: энергия упругой деформации плиты и шарика прекращается в, кинетическую энергию шарика. При дальнейшем движении вверх скорость шарика под действием силы тяжести уменьшается, и кинетическая энергия превращается в потенциальную энергию тяготения, В наивысшей точке шарик обладает снова только потенциальной энергией тяготения.
Поскольку можно считать, что шарик поднялся на ту же высоту, с которой он начал падать, потенциальная энергия шарика в начале и в конце описанного процесса одна и та же. Более, того, в любой момент времени при всех превращениях энергии сумма потенциальной энергии тяготения, потенциальной энергии упругой деформации, и кинетической энергии все время остается одной и той же. Для процесса превращения потенциальной энергии, обусловленной силой тяжести, в кинетическую и обратно при падении и подъеме шарика это было показано простым расчетом. Можно было бы убедиться, что и при превращении кинетической энергии в потенциальную энергию упругой деформации плиты и шарика и затем при обратном процессе превращения этой энергии в кинетическую энергию отскакивающего шарика сумма потенциальной энергии тяготения, энергии упругой деформации и кинетической энергии также остается неизменной, т. е. закон сохранения механической энергии выполнен.
Теперь мы можем объяснить, почему нарушался закон сохранения работы в простой машине, которая деформировалась при передаче работы: дело в том, что работа, затраченная на одном конце машины, частично или полностью затрачивалась на деформацию самой простой машины (рычага, веревки и т.д.), создавая в ней некоторую потенциальную энергию деформации, и лишь остаток работы передавался на другой конец машины. В сумме же переданная работа вместе с энергией деформации оказывается равной затраченной работе. В случае абсолютной жесткости рычага, нерастяжимости веревки и т. д. Простая машина не может накопить в себе энергию, и вся работа, произведенная на одном ее конце, полностью передается на другой конец.
Силы трения и закон сохранения, механической энергии. Присматриваясь к движению шарика, подпрыгивающего на плите, можно обнаружить, что после каждого удара шарик поднимается на несколько меньшую высоту, чем раньше, т. е. полная энергия не остается в точности постоянной, а понемногу убывает; это значит, что закон сохранения энергии в таком виде, как мы его сформулировали, соблюдается в этом случае только приближённо. Причина заключается в том, что в этом опыте возникают силы трения; сопротивление воздуха, в котором движется шарик, и внутреннее трение в самом материале шарика и плиты. Вообще, при наличии трения закон сохранения механической энергии всегда нарушается и полная энергия тел уменьшается. За счет этой убыли энергии и совершается работа против, сил трения. Например, при падении тела с большой высоты скорость, вследствие действия возрастающих сил сопротивления среды, вскоре становится постоянной; кинетическая энергия тела перестает меняться, но его потенциальная энергия уменьшается. Работу против силы сопротивления воздуха совершает сила тяжести за счет потенциальной, энергии тела. Хотя при этом и сообщается некоторая кинетическая энергия окружающему воздуху, но она меньше, чем убыль потенциальной энергии тела, и, значит, суммарная механическая энергия убывает.
Работа против сил трения может совершаться и за счет кинетической энергии. Например, при движении лодки, которую оттолкнули от берега пруда, потенциальная свергая лодки остается постоянной, но вследствие сопротивления воды уменьшается скорость движения лодки, т.е. ее кинетическая энергия, я приращение кинетической энергии воды, наблюдающееся при этом, меньше, чем убыль кинетической энергии лодки.
Подобно этому действуют и силы трения между твердыми телами. Например, скорость, которую приобретает груз, соскальзывающий с наклонной плоскости, а, следовательно и его кинетическая энергия, меньше той, которую он приобрел бы отсутствие трения. Можно так подобрать угол наклона плоскости, что груз будет скользить равномерно. При этом его потенциальная энергия будет убывать, а Кинетическая - оставаться постоянной, и работа против сил трения будет совершаться за счет потенциальной энергии.
В природе все движения (за исключением движений в вакууме, например, движений небесных тел) сопровождаются трением. Поэтому при таких движениях закон сохранения механической энергии нарушается, и это нарушение происходит всегда в одну сторону — в сторону уменьшения полной энергии.
Силы трения занимают особое положение в вопросе о законе ее хранения механической энергии. Если сил трения нет, то закон сохранения механической энергии соблюдается: полная механическая энергия системы остается постоянной. Если же действуют силы трения, то энергия уже не остается постоянной, а убывает при движении. Но при этом всегда растет внутренняя энергия. С развитием физики обнаруживались все новые виды энергии: была обнаружена световая энергия, энергия электромагнитных волн, химическая энергия, проявляющаяся при химических реакциях (в качестве ври мера достаточно указать хотя бы на химическую энергию, запасенную во взрывчатых веществах и превращающуюся в механическую и тепловую энергию при взрыве), наконец была открыта ядерная энергия. Оказалось, что совершаемая над телом работа равна приращению суммы всех видов энергии тела; работа же, совершаемая некоторым телом на, другими телами, равна убыли суммарной энергии данного тела. Для всех видов энергии оказалось, что возможен переход энергии из одного вида в другой, переход энергии от одного тела к другому, но что при всех таких перехода; общая энергия всех видов остаемся все время строго постоянной. В этом заключается всеобщность закона сохранения энергии.
Хотя общее количество энергии остается постоянным количество полезной для нас энергии может уменьшаться и в действительности постоянно уменьшается. Переход энергии в другую форму может означать переход ее в бесполезную для нас форму. В механике чаще всего это - нагревание окружающей среды, трущихся поверхностей и т п. Такие потери не только невыгодны, но и вредно отзываются на самих механизмах; так, во избежание перегревания приходится специально охлаждать трущиеся части механизмов.