Статьи

Подписаться на RSS

Популярные теги Все теги

Бентос – понятие, классификация, продуктивность.

  1. 1.     Бентос – понятие, классификация, продуктивность.

Бентос (от греч. benthos — глубина) – совокупность животных и растений, обитающих на дне или связанных с дном; многие из этих организмов проходят планктонную стадию развития, способствующую их расселению. По преобладающим размерам составляющих Бентос организмов его разделяют на микробентос (бактерии, простейшие, донные диатомовые водоросли и др.), мейобентос (мелкие черви, рачки и др. организмы с длиной тела обычно не более2 мм) и макробентос (донные организмы крупнее2 мм). Различают фитобентос — водоросли и морские травы, которые заселяют лишь освещенные части шельфа, и зообентос — донных животных, заселяющих дно океана вплоть до ультраабиссальных глубин. Организмы зообентоса могут обитать на слоевищах растений, на поверхности грунта (эпифауна), зарываться в относительно мягкий грунт (инфауна) или вбуравливаться в непрочные скальные породы (эндолитофауна); они различаются степенью подвижности (от прикрепленных форм до активно ползающих). Виды, связанные с грунтом, но способные к активному плаванию, выделяются в нектобентос (скат, камбала и др.). Среди животных Бентоса часть питается непосредственно растениями (фитофаги), другие потребляют органические вещества, взвешенные в придонном слое воды (сестонофаги) или содержащиеся в грунте (детритофаги), хищники питаются животными; кроме того, есть питающиеся падалью (некрофаги) и всеядные. Организмы Бентоса играют большую роль в природных экосистемах, образуя сложные пищевые (трофические) цепи и оказываясь пищей для рыб, млекопитающих и птиц. Многие представители Бентоса издавна употребляются в пищу людьми и служат объектами промысла и культивирования.

Фитопланктон является основой питания для зоопланктона и бентоса. В тоже время развитие гидробионтов зависит от видового состава и обилия погруженных растений и растений с плавающими листьями. Чем разнообразнее состав и структура зарастания водной растительности, тем разнообразнее и богаче в ней зоопланктон (Баклановская, 1956).         

Обратная зависимость наблюдается между растительностью и биомассой зообентоса. Высокая продуктивность бентоса в пресных водоемах отмечается на слабо заросших грунтах, с небольшим количеством растительных остатков и слабой аккумуляцией (Воноков, 1956; Косова, 1958). Ухудшение в водоеме кислородного режима, уменьшение притока биогенных элементов и преобладания в балансе процессов накопления органических веществ, приводят к доминированию моновидовых или обедненных растительных группировок и, следовательно, к снижению продуктивности фитопланктона, зоопланктона и зообентоса.

По наблюдениям М.В.Павловой среднегодовая биомасса бентоса наиболее продуктивных участков озера Иссык-Куль -заливов, составляет 104,2 кг/га. Для сравнения: средняя биомасса бентоса в прибрежной зоне Байкала равна 220 кг/га. По величине продуктивности бентоса Иссык-Куль относится к водоемам средней кормности.

  1. 2.     Сущность биологической целесообразности.

Во взаимосвязанности всех явлений Вселенной лежат истоки целесообразности, царящей в живой природе. То есть истоки феномена жизни следует искать в структуре и особенностях развития Вселенной.

Феномен целесообразности (телеологичности) изначально присущ природе. В его основе лежит принцип оптимальности, причина которого в единстве Вселенной и взаимодополнительности всех протекающих в ней процессов. Раздражимость, инстинкт, психика, разум - все это лишь некоторые наиболее привычные нам проявления феномена целесообразности. Можно показать, что все они являются конкретными механизмами, найденными природой для реализации принципа оптимальности. Так человек, использует свой разум для оценки последствий своих шагов в целях нахождения наиболее оптимального варианта поведения. Психика животных также служит этой цели, но “степень проникновения в будущее” у психики гораздо меньше, чем у разума. То, что мы понимаем под конкретными законами природы, выполняет аналогичные функции, но еще с более незначительной “степенью проникновения в будущее”. Так из квантовой теории известно, что даже в процессе взаимодействия двух элементарных частиц присутствует парадоксальная фаза, когда частицы каким-то образом получают информацию (прогноз) о ближайшем будущем. В основу принципа оптимальности могут быть положены два взаимодополнительных постулата:

1) любая система стремится занять состояние, в котором любое изменение внутри системы практически не влияет (влияет минимально возможным образом) на состояние системы в целом;

2) из всех возможных состояний в каждый момент времени реализуется то состояние, с которым связано наименьшее количество изменений.

Первый постулат лежит в основе динамики Вселенной, заставляя ее эволюционировать от неравновесных состояний ко все более равновесным. Второй постулат запрещает скачкообразные переходы в равновесные состояния, заставляя всегда выстраивать четкие причинно-следственные цепи событий. Можно видеть, что второй постулат возникает вследствие действия принципа Ле Шателье - Брауна (природа пытается затормозить любые изменения) при попытках системы перейти в равновесное состояние, то есть он взаимодополнителен к первому постулату.

Резонно возникает вопрос: если в любой момент времени природа реализует только оптимальные состояния и процессы, почему же в мире так много абсурда, ошибок, далеких от понятия оптимальности? Или может быть человек, приведший планету к экологической катастрофе, является исключением, для которого закон оптимальности не писан? Но ведь не только человек совершает абсурдные поступки. Разве есть какая-то оптимальность в поведении ночной бабочки, летящей на огонь, или стаи саранчи, уничтожающей всю растительность в округе и затем гибнущей от голода, или мухи, бьющейся о стекло? Оказывается есть. Так, например, муха, бьющаяся о стекло, задействует один из самых эффективных алгоритмов поиска оптимального решения: метод случайного поиска. Муха не имеет того аналитического аппарата, который есть у человека. Это мы понимаем, что нужно чуть отклониться в сторону и вылететь в открытую форточку. Мухе же не известно, есть ли вообще выход из той ситуации, в которую она попала. Но случайный поиск гарантирует, что решение рано или поздно будет найдено, если оно, в принципе, возможно. Более того, случайный поиск позволяет иногда находить выход даже из, казалось бы, тупиковых ситуаций (так муха может найти свое решение задачи, а не то, которое для нее приготовили мы, например, она может отыскать и вылететь в щель, о которой мы даже не подозревали). Причем если функция (ситуация) сама имеет случайный характер (или ее характер неизвестен), то данный метод дает наименьшее среднестатистическое время поиска ее экстремума.

Природа очень часто задействует подобные алгоритмы оптимизации. Так, например, очень показательна в этом смысле тактика поиска мест взятка (нектара и пыльцы), осуществляемая пчелиной семьей. Если одна из пчел найдет богатую цветочную поляну, то при возвращении в улей она совершает свой знаменитый “танец на сотах”, который “рассказывает” другим пчелам, куда нужно лететь, сколько энергии для этого потребуется, какие именно цветы растут на поляне и т.п. После этого множество пчел вылетает по месту назначения. При этом они демонстрируют хорошее понимание переданной им информации. Но почему-то не все пчелы, наблюдавшие танец, достаточно пунктуальны.

Некоторые из них сбиваются с пути или даже изначально летят в неправильном направлении, иногда в совершенно противоположном. Это уменьшает количество принесенного в улей взятка. Но, оказывается, подобные ошибки изначально запрограммированы и несут в себе большую пользу. В принципе, природа могла бы наградить пчел абсолютной роботоподобной безошибочностью в понимании друг друга. Но она дала пчелам “право на ошибку”. Даже процент пчел, сбившихся с пути, определен достаточно строго (около 5%). Именно “ошибочные” вылеты приносят как правило в улей информацию о других богатых источниках взятка, на которые эти пчелы иногда случайно натыкаются.

Без определенной доли ошибки, абсурда, случайности природа не смогла бы развивать и усложнять свои формы. Поэтому, наверное, А.С.Пушкин назвал случай “богом-изобретателем”. Именно здесь реализуется та самая свобода выбора, без которой немыслима гармония в системе. Системы, структура которых лишена неопределенности, случайности, ошибки, нежизнеспособны, так как они далеки от гармонии - наиболее объективного оптимального состояния. Они неспособны развиваться, а потому для Вселенной они бесполезны. Поэтому они довольно быстро разрушаются (накапливают ошибку). Механизмы этого разнообразны. Гармоничное соотношение между строгой предопределенностью и свободой выбора в структуре системы определяется “золотой пропорцией”.

 

  1. 3.     Биологическая изоляция и её роль в преобразовании популяций.

Изоляция (от франц. isolation — отделение, разобщение) (биологическая), ограничение или нарушение свободного скрещивания индивидов и перемешивания разных форм организмов; один из элементарных факторов эволюции. Ч. Дарвин на примере островных фаун и флор показал роль И. в возникновении, расширении и углублении различий между близкими формами живых организмов. Если какая-либо, чаще периферическая, часть исходной популяции изолируется какими-либо географическими преградами, то со временем эта часть популяции может превратиться в самостоятельный вид. Такой географический способ видообразования, по мнению многих биологов, — единственный или, во всяком случае, главный путь видообразования.

В макроэволюционном плане И. обусловливается нескрещиваемостью разных видов, т. е. преимущественно носит характер репродуктивной И. В микроэволюционном плане, т. е. на внутривидовом уровне, различают 2 основные группы И.: территориально-механическую, к которой относятся все случаи возникновения преград между разными частями населения или разными популяциями (например, водные барьеры для сухопутных и суша для водных организмов, горы для долинных и долины для горных видов и др.), и биологическую, которая подразделяется на 3 подгруппы:

а) экологическая И. — индивиды двух или большего числа биотипов редко или совсем не встречаются в течение репродукционного периода:

б) морфо-физиологическая И. — копуляция затруднена или невозможна по морфологическим или этологическим (поведенческим) причинам;

в) собственно генетическая И., обусловленная неполноценностью (снижение жизнеспособности, плодовитости или полная стерильность) гибридов, полученных в результате соответствующих скрещиваний.

Все виды И. могут оказывать на популяции различное давление, так как любая форма И. может быть количественно выражена в разной степени. Территориально-механическая И. (на больших территориях — географическая) приводит к аллопатрическому формообразованию и при достаточно длительном действии обычно вызывает появление какой-либо формы биологической И. Случаи первичного возникновения биологической И. могут повести к симпатрическому формообразованию.

Биологическую изоляцию обеспечи­вают две группы механизмов: устра­няющие скрещивание (докопуляционные) и изоляция при скрещивании (послекопуляционные).

Спариванию близких форм препят­ствуют различия во время половой активности и созревания половых про­дуктов. В природе обычна  биотопическая изоляция, при которой потенциальные партнеры по спариванию не встречают­ся, так как они чаще обитают в разных местах. Так, часть зябликов (Fringillacoelebs) гнездится в Московской облас­ти в лесах таежного типа, а другая — в невысоких и редких насаждениях с большим числом полян. Потенциаль­ная возможность перекрестного спари­вания особей этих групп несколько ограничена. Интересный пример биотопической изоляции – симпатрические внутривидовые формы у обыкно­венной кукушки (Cuculuscanorus). В Европе обитает несколько «биологи­ческих рас» кукушек, различающихся генетически закрепленной окраской яиц. В Восточной Европе одни откла­дывают голубые яйца в гнезда обыкно­венной горихвостки и лугового чекана, другие — светлые в крапинку яйца в гнезда мелких воробьиных птиц, имею­щих яйца сходной окраски. Изоляция между этими формами кукушек под­держивается за счет уничтожения вида­ми-хозяевами недостаточно замаски­рованных яиц. У многих видов пред­почтение биотопа — эффективный изо­ляционный механизм.

Большое значение в возникнове­нии и поддержании биологической изо­ляции у близких форм имеет этоло­гическая изоляция — осложнения спа­ривания, обусловленные особенностя­ми поведения. Ничтожные на пер­вый взгляд отличия в ритуале ухажи­вания и обмене зрительными, звуко­выми, химическими раздражителями будут препятствовать продолжению ухаживания.

Важным изолирующим механиз­мом, затрудняющим скрещивание близ­ких видов, оказывается возникновение морфофизиологических различий в органах размножения (морфофизиологическая изоляция).

Вторая большая группа изолирую­щих механизмов в природе связана с возникновением изоляции после опло­дотворения (собственно-генетическая изоляция), включающей гибель зигот после оплодотворения, развитие пол­ностью или частично стерильных гиб­ридов, а также пониженную жизнеспо­собность гибридов.

  1. 4.     Представление о гено- и фенотипе.

Генотип, совокупность всех генов, локализованных в хромосомах данного организма. В более широком смысле Г. — совокупность всех наследственных факторов организма — как ядерных (геном), так и неядерных, внехромосомных (т. е. цитоплазматических и пластидных наследственных факторов). Термин предложен датским биологом В. Иогансеном (1909). Г. — носитель наследственной информации, передаваемой от поколения к поколению. Он представляет собой систему, контролирующую развитие, строение и жизнедеятельность организма, т. е. совокупность всех признаков организма — его фенотип. Г. — единая система взаимодействующих генов, так что проявление каждого гена зависит от генотипической среды, в которой он находится. Например, красная окраска цветков у некоторых сортов душистого горошка возникает только при одновременном присутствии в Г. доминантных аллелей двух различных генов, тогда как порознь каждая из этих аллелей обусловливает белую окраску цветков. Взаимодействие Г. с комплексом факторов внутренней и внешней среды организма обусловливает фенотипическое проявление признаков. Примером влияния среды на фенотипическое проявление Г. может служить окраска меха у кроликов т. н. гималайской линии: при одном и том же Г. эти кролики при выращивании на холоде имеют чёрный мех, при умеренной температуре — «гималайскую» окраску (белая с чёрными мордой, ушами, лапами и хвостом), при повышенной температуре — белый мех. Потомки этих трёх групп животных наследуют не какую-то одну неизменную окраску меха, а способность давать определенную окраску, различную в разных условиях среды. Поэтому в общем виде правильнее говорить, что Г. определяет наследование не конкретных признаков, а норму реакции организма а все возможные условия среды. На разных этапах развития особи в активном состоянии находятся то одни, то др. гены; поэтому Г. в онтогенезе функционирует как изменчивая подвижная система.

Термин «Г.» иногда употребляют в более узком смысле для обозначения лишь группы генов или даже отдельных генов, наследование которых составляет предмет наблюдения.

Например, в расщепляющемся потомстве от моногибридного скрещивания АА (аа принято говорить о генотипах АА, Аа и аа, отвлекаясь от возможных различий между соответствующими особями (или группами особей) по др. генам.

Фенотип, особенности строения и жизнедеятельности организма, обусловленные взаимодействием его генотипа с условиями среды. В широком смысле термин «Ф.», предложенный дат. биологом В. Иогансеном в 1909, обозначает всю совокупность проявлений генотипа (общий облик организма), а в узком – отдельные признаки (фены), контролируемые определёнными генами. Понятие Ф. распространяется на любые признаки организма, начиная от первичных продуктов действия генов – молекул РНК и полипептидов и кончая особенностями внешнего строения, физиологических процессов, поведения и т.д.

  На уровне первичных продуктов действия генов связь между генотипом организма и его Ф. вполне однозначна: каждой последовательности нуклеотидов в молекуле дезоксирибонуклеиновой кислоты (ДНК) соответствует одна вполне определённая последовательность нуклеотидов в молекуле рибонуклеиновой кислоты (РНК) и соответственно одна определённая последовательность аминокислот в полипептидной (белковой) цепи. Однако и на этом уровне последовательность нуклеотидов в ДНК, т. е. её первичная структура, однозначно определяет только строение синтезируемых на её основе РНК и белков, но не время их синтеза или количество этих продуктов, подобно тому, как типографская матрица определяет содержание текста, но не время его печатания или тираж. Время же активации отдельных генов и интенсивность их «считывания» зависят как от предшествовавшей работы др. генов, так и от комплекса внутриклеточных факторов и факторов внешней среды.

  На вышестоящих уровнях биологической организации, т. е. на уровне клеток, тканей, органов, систем органов и организма в целом, взаимоотношения между генотипом и Ф. ещё сложнее. В этих случаях каждый признак – результат взаимодействия продуктов многих генов, которое, в свою очередь, зависит от конкретных условий среды. Особенно наглядно это видно на примере количественных признаков. Изучая вес зёрен в нескольких самоопыляющихся, т. е. генетически однородных, линиях растений фасоли, Иогансен обнаружил, что у растений одного генотипа зерна варьируют по весу, т. е. имеют разный Ф. Причём границы изменчивости веса зёрен разных линий часто перекрываются (одни и те же Ф. могут соответствовать разным генотипам). Вместе с тем между разными линиями, выращиваемыми в одинаковых условиях, имеются стабильные наследственные различия в среднем весе зёрен. Однако и средний вес зёрен в каждой линии может изменяться в зависимости от условий среды, например режима питания растений. Т. о., относительная роль наследственности и среды в становлении признаков может быть очень разной. Изучение количественных признаков, имеющих важное практическое значение в сельском хозяйстве и медицине, проводят специальными биометрическими методами анализа наследуемости признаков.

  1. 5.     Загрязнение почвы.

Загрязнение почв вызывают самые различные вещества - микроэлементы металлов, микродозы органических загрязнителей, продукты ассенизации и дезинфекции, средства защиты растений, углеводороды и радиоактивные вещества. Загрязнение почв губительно сказывается на растениях, приводя к накоплению в них токсичных элементов; эта биоаккумуляция опасна и для человека. Кроме того, попавшие в землю химикаты могут вызвать коррозию подземных коммуникаций. В наибольшей степени загрязнению подвергаются почвы в горнодобывающих районах, в местах интенсивного земледелия, а также почвы прилегающих к автодорогам лугов и пашен, земли, куда сбрасываются стоки агропромышленных предприятий или отстойный ил, образовавшийся после очистки городских стоков. Большая часть загрязненных земель находится в крупных промышленных регионах. Техногенное загрязнение почвы потребовало разработки особых методов ее регенерации и охраны.

Химическое загрязнение почвы - изменение химического состава почвы, возникшее под прямым или косвенным воздействием фактора землепользования (промышленного, сельскохозяйственного, коммунального), вызывающее снижение ее качества и возможную опасность для здоровья населения.

Биологическое загрязнение почвы – составная часть органического загрязнения, обусловленного диссеминацией (распространением) возбудителей инфекционных и инвазионных болезней, а также вредными насекомыми и клещами, переносчиками возбудителей болезней человека, животных и растений.

  1. 6.     Кислотные дожди, их происхождение, последствия воздействия на природные объекты.

Впервые термин «кислотный дождь» был введен в 1872 году английским исследователем Ангусом Смитом. Его внимание привлек викторианский смог в Манчестере. И хотя ученые того времени отвергли теорию о существовании кислотных дождей, сегодня уже никто не сомневается, что кислотные дожди являются одной из причин гибели жизни в водоемах, лесов, урожаев, и растительности. Кроме того кислотные дожди разрушают здания и памятники культуры, трубопроводы, приводят в негодность автомобили, понижают плодородие почв и могут приводить к просачиванию токсичных металлов в водоносные слои почвы.

Вода обычного дождя тоже представляет собой слабокислый раствор. Это происходит вследствие того, что природные вещества атмосферы, такие как двуокись углерода (СО2), вступают в реакцию с дождевой водой. При этом образуется слабая угольная кислота (CO2 + H2O —> H2CO3). [2]. Тогда как в идеале рН дождевой воды равняется 5.6-5.7, в реальной жизни показатель кислотности (рН) дождевой воды в одной местности может отличаться от показателя кислотности дождевой воды в другой местности. Это, прежде всего, зависит от состава газов, содержащихся в атмосфере той или иной местности, таких как оксид серы и оксиды азота.

В 1883 году шведский ученый Сванте Аррениус ввел в обращение два термина - кислота и основание. Он назвал кислотами вещества, котoрые при растворении в воде образуют свободные положительно заряженные ионы водорода (Н+). Основаниями он назвал вещества, котрые при растворении в воде образуют свободные отрицательно заряженные гидроксид-ионы (ОН-). Термин рН изпользуют в качестве показателя кислотности воды. Термин рН значит в переводе с английского - показатель степени концентрации ионов водорода.

Значение рН измеряется на шкале от 0 до 14. В воде и водных растворах присутствуют как ионы водорода (Н+), так и гидроксид-ионы (ОН). Когда концентрация ионов водорода (Н+) в воде или растворе равна концентрации гидроксид-ионов (ОН-) в том же растворе, то такой раствор является нейтральным. Значение рН нейтрального раствора равняются 7 (на шкале от 0 до 14). При растворении кислот в воде повышается концентрация свободных ионов водорода (Н+). Они то и повышают кислотность воды. При этом, с повышением концентрации ионов водорода (Н+) понижается концентрация гидроксид-ионов (ОН-). Те растворы, значение рН которых на приведенной шкале находится в пределах от 0 до <7, называются кислыми. Когда в воду попадают щелочи, то в воде повышается концентрация гидроксид-ионов (ОН-). При этом в растворе понижается концентрация ионов водорода (Н+). Растворы, значение рН которых находится в пределах от >7 до 14, называются щелочными.

Следует обратить внимание ещё на одну особенность шкалы рН. Каждая последующая ступенька на шкале рН говорит о десятикратном уменьшении концентрации ионов водорода (Н+)(и соответственно кислотности) в растворе и увеличении концентрации гидроксид-ионов (ОН-). Например, кислотность вещества со значением рН4 в десять раз выше кислотности вещества со значением рН5, в сто раз выше, чем кислотность вещества со значением рН6 и в сто тысяч раз выше, чем кислотность вещества со значением рН9.

Кислотный дождь образуется в результате реакции между водой и такими загрязняющими веществами, как оксид серы (SO2) и различными оксидами азота (NOх). Эти вещества выбрасываются в атмосферу автомобильным транспортом, в результате деятельности металлургических предприятий и электростанций.

Соединения серы (сульфиды, самородная сера и другие) содержатся в углях и рудах (особенно много сульфидов в бурых углях), при сжигании или обжиге которых образуются летучие соединения — оксид серы (IV) — SO2- сернистый ангидрид, оксид серы (VI) — SO3 — серный ангидрид, сероводород — H2S(в малых количествах, при недостаточном обжиге или неполном сгорании, при низкой температуре). Различные соединения азота содержатся в углях, и особенно в торфе (так как азот, как и сера, входит в состав биологических структур, из которых образовались эти полезные ископаемые). При сжигании таких ископаемых образуются оксиды азота (кислотные оксиды, ангидриды) — например, оксид азота (IV) NO2.Вступая в реакцию с водой атмосферы, они превращаются в растворы кислот - серной, сернистой, азотистой и азотной. Затем, вместе со снегом или дождем, они выпадают на землю.

Последствия выпадения кислотных дождей наблюдаются в США, Германии, Чехии, Словакии, Нидерландах, Швейцарии, Австралии, республиках бывшей Югославии и ещё во многих странах земного шара.

Кислотный дождь оказывает отрицательное воздействие на водоемы - озера, реки, заливы, пруды - повышая их кислотность до такого уровня, что в них погибает флора и фауна. Водяные растения лучше всего растут в воде со значениями рН между 7 и 9.2. С увеличением кислотности (показатели рН удаляются влево от точки отсчета 7) водяные растения начинают погибать, лишая других животных водоема пищи. При кислотности рН6 погибают пресноводные креветки. Когда кислотность повышается до рН5.5, погибают донные бактерии, которые разлагают органические вещества и листья, и органический мусор начинает скапливаться на дне. Затем гибнет планктон - крошечное животное, которое составляет основу пищевой цепи водоема и питается веществами, образующимися при разложении бактериями органических веществ. Когда кислотность достигает рН 4.5, погибает вся рыба, большинство лягушек и насекомых.

По мере накопления органических веществ на дне водоемов из них начинают выщелачиваться токсичные металлы. Повышенная кислотность воды способствует более высокой растворимости таких опасных металлов, как алюминий, кадмий, ртуть и свинец из донных отложений и почв.

Эти токсичные металлы представляют опасность для здоровья человека. Люди, пьющие воду с высоким содержанием свинца или принимающие в пищу рыбу с высоким содержанием ртути, могут приобрести серьёзные заболевания.

Кислотный дождь наносит вред не только водной флоре и фауне. Он также уничтожает растительность на суше. Ученые считают, что хотя до сегодняшнего дня механизм до конца ещё не изучен, "сложная смесь загрязняющих веществ, включающая кислотные осадки, озон, и тяжелые металлы в совокупности приводят к деградации лесов.

Экономические потери от кислотных дождей в США, по оценкам одного исследования, составляют ежегодно на восточном побережье 13 миллионов долларов и к концу века убытки достигнут 1.750 миллиардов долларов от потери лесов; 8.300 миллиардов долларов от потери урожаев (только в бассейне реки Огайо) и только в штате Минессота 40 миллионов долларов на медицинские расходы. Единственный способ изменить ситуацию к лучшему, по мнению многих специалистов,- это уменьшить количество вредных выбросов в атмосферу.

  1. 7.     Технологии утилизации отходов промышленности.

Необходимость обеспечения экологической безопасности и повышения экономической эффективности утилизации отходов вынудили ученых и специалистов осуществить разработку отечественной технологии высокотемпературной (1500-1600°С) утилизации твердых бытовых отходов с получением пиролизного газа и выработкой электроэнергии. Эта технология позволяет перерабатывать отходы любой калорийности и влажности, одновременно с ТБО возможна переработка некоторых видов промотходов. Высокотемпературный пиролиз газов с полным разложением органических составляющих и их очистка позволяют производить их дальнейшее дожигание в промышленных котлах. Получаемая электроэнергия для собственных нужд и продажи потребителям в 2 раза дешевле, чем получаемая традиционными способами.

Экологически безопасная технология утилизации жидких отходов предприятий горной промышленности. Технология очистки сточных вод основана на хемосорбционном извлечении ионов тяжелых и редких металлов полимерными фильтрующими материалами ВИОН и включает следующие стадии:

1) предварительная фильтрация и отстаивание с целью удаления из водных растворов механических примесей;

2) сорбционная очистка от ионов Те (II), Те (III), Cо (II) и Cu (II) катионитом КН-1 и от ионов W (VI) и Mo (VI) аниониом АС-1 в динамическом режиме при рН среды 6-8;

3) раздельная кислотно-щелочная регенерация катионо- и анионообменных фильтров с концентрированием десорбированных ионов в элюатах;

4) утилизация содовых реагентов в качестве промпродуктов в основной схеме технологического процесса;

5) использование очищенной воды в замкнутой системе водооборота.

Передвижных установки для переработки жидких радиоактивных отходов. Назначение передвижных установок: переработка жидких радиоактивных отходов низкого уровня активности с целью очистки воды до норм радиационной безопасности,  концентрирование токсичных примесей в малом объеме с целью снижения общего количества радиоактивных отходов.

В установках ГУП МосНПО «Радон» используются процессы фильтрации, сорбции, ультрафильтрации, обратного осмоса, электродиализа, коагуляции, электроосмоса.