Все началось с идеи научить машину считать или хотя бы складывать многоразрядные целые числа.
Еще около 1500 г. великий деятель эпохи Просвещения Леонардо да Винчи разработал эскиз 13-разрядного суммирующего устройства, что явилось первой дошедшей до нас попыткой решить указанную задачу. Первую же действующую суммирующую машину построил в 1642 г. Блез Паскаль – знаменитый французский физик, математик, инженер. Его 8-разрядная машина сохранилась до наших дней.
От замечательного курьеза, каким восприняли современники машину Паскаля, до создания практически полезного и широко используемого агрегата – арифмометра (механического вычислительного устройства, способного выполнять 4 арифметических действия) – прошло почти 250 лет. Уже в начале XIX века уровень развития ряда наук и областей практической деятельности (математики, механики, астрономии, инженерных наук, навигации и др.) был столь высок, что они настоятельнейшим образом требовали выполнения огромного объема вычислений, выходящих за пределы возможностей человека, не вооруженного соответствующей техникой.
Над ее созданием и совершенствованием работали как выдающиеся ученые с мировой известностью, так и сотни людей, имена многих из которых до нас не дошли, посвятивших свою жизнь конструированию механических вычислительных устройств.
Еще в 70-х годах нашего века на полках магазинов стояли механические арифмометры и их “ближайшие родственники”, снабженные электрическим приводом – электромеханические клавишные вычислительные машины.
Как это часто бывает, они довольно долго удивительным образом соседствовали с техникой совершенно иного уровня – автоматическими цифровыми вычислительными машинами (АЦВМ), которые в просторечии чаще называют ЭВМ (хотя, строго говоря, эти понятия не совсем совпадают). История АЦВМ восходит еще к первой половине прошлого века и связана с именем замечательного английского математика и инженера Чарльза Бэббиджа.
Им в 1822 г. была спроектирована и почти 30 лет строилась и совершенствовалась машина, названная вначале “разностной”, а затем, после многочисленных усовершенствований проекта, “аналитической”. В “аналитическую” машину были заложены принципы, ставшие фундаментальными для вычислительной техники.
Для выполнения расчетов большого объема существенно не только то, как быстро выполняется отдельная арифметическая операция, но и то, чтобы между операциями не было “зазоров”, требующих непосредственного человеческого вмешательства.
Например, большинство современных калькуляторов не удовлетворяют этому требованию, хотя каждое доступное им действие выполняют очень быстро.
Необходимо, чтобы операции следовали одна за другой безостановочно.
Для автоматического выполнения операций программа должна вводиться в исполнительное устройство со скоростью, соизмеримой со скоростью выполнения операций.
Бэббидж предложил использовать для предварительной записи программ и ввода их в машину перфокарты, которые к тому времени применялись для управления ткацкими станками.
Эти революционные идеи натолкнулись на невозможность их реализации на основе механической техники, ведь до появления первого электромотора оставалось почти полвека, а первой электронной радиолампы – почти век!
Они настолько опередили свое время, что были в значительной мере забыты и переоткрыты в следующем столетии.
Впервые автоматически действующие вычислительные устройства появились в середине XX века. Это стало возможным благодаря использованию наряду с механическими конструкциями электромеханических реле.
Работы над релейными машинами начались в 30-е годы и продолжались с переменным успехом до тех пор, пока в 1944 г. под руководством Говарда Айкена – американского математика и физика – на фирме IBM (International Business Machines) не была запущена машина “Марк-1”, впервые реализовавшая идеи Бэббиджа (хотя разработчики, по-видимому, не были с ними знакомы). Для представления чисел в ней были использованы механические элементы (счетные колеса), для управления – электромеханические. Одна из самых мощных релейных машин РВМ-1 была в начале 50-х годов построена в СССР под руководством Н.И.Бессонова; она выполняла до 20 умножений в секунду с достаточно длинными двоичными числами.
Однако, появление релейных машин безнадежно запоздало и они были очень быстро вытеснены электронными, гораздо более производительными и надежными.
Подлинная революция в вычислительной технике произошла в связи с применением электронных устройств.
Работа над ними началась в конце 30-х годов одновременно в США, Германии, Великобритании и СССР. К этому времени электронные лампы, ставшие технической основой устройств обработки и хранения цифровой информации, уже широчайшим образом применялись в радиотехнических устройствах.
В США первая ламповая ЭВМ появилась в 1946 году. Ее разработка началась в 1943 году в Пенсильванском университете (University of Pennsylvania), получившем заказ от Баллистической исследовательской лаборатории министерства обороны США (US Army Ballistic Research Lab). Группой разработчиков, в которую входили десять инженеров и двести техников, руководили профессор Джон Моучли (John Mauchly, 1907–1980) и молодой выпускник университета Джон Преспер Эккерт (John Presper Eckert, 1919–1995).
Машина, которая получила название ENIAC — Electronical Numerical Integrator and Calculator (Электронно-цифровой интегратор и вычислитель), состояла из восемнадцати тысяч ламп и полутора тысяч реле. Этот монстр занимал помещение площадью 120 кв. м, имел объем 720 куб. м, весил 30 т и потреблял 150 кВт электроэнергии.
Несмотря на то, что в ENIAC была мизерная память (20 триггерных регистров), за счет изощренной арифметики (аппаратное умножение, деление и извлечение) ЭВМ работала существенно быстрее релейных машин. В секунду производилось пять тысяч сложений и триста умножений. Данные поступали на обработку с перфокарт и выводились на карточный перфоратор.
Поскольку тысячи электронных ламп выделяли громадную тепловую энергию, в машине использовалась мощная система охлаждения. Но и это не спасало от постоянного перегорания ламп. При отсутствии эффективных диагностических средств техникам приходилось беспрерывно и подолгу отыскивать отказавшие элементы.
ENIAC имела и еще одну неприятную особенность, которая не позволяет отнести эту машину к ЭВМ первого поколения.
Ее программа не хранилась в оперативной памяти, а жестко задавалась при помощи шести тысяч перемычек на сорока коммутационных панелях. На каждое перепрограммирование ENIAC уходило не менее двух дней.
Следующей разработкой Моучли и Эккерта, которую они выполнили для компании Sperry Rand, стал знаменитый UNIVAC I (Universal Automatic Computer). Это была первая коммерческая ЭВМ, запущенная в серию в 1951 году. Первым ее заказчиком, выложившим $1,6 млн, стало статистическое агентство, которое использовало UNIVAC для переписи населения страны. Данная разработка была значительно успешнее предыдущей в техническом отношении: при меньшем в три раза числе ламп она имела в два раза большее быстродействие. Поскольку требовалось обрабатывать громадные объемы информации, машину укомплектовали внешним накопителем на магнитной ленте объемом 12 Мбайт. Sperry Rand выпустила более пятидесяти машин этой серии, последняя из них проработала до 1965 года.
Несмотря на то, что UNIVAC, в отличие от ENIAC, уже хранил программу в оперативной памяти, и он не является первой ЭВМ первого поколения. Тут американцев обошли англичане. Причем, сами же американцы этому и способствовали.
Практически одновременно велись работы над созданием ЭВМ в Великобритании. С ними связано прежде всего имя Аллана Тьюринга – математика, внесшего также большой вклад в теорию алгоритмов и теорию кодирования. В 1944 г. в Великобритании была запущена машина “Колосс”.
Эти и ряд других первых ЭВМ не имели важнейшего с точки зрения конструкторов последующих компьютеров качества – программа не хранилась в памяти машины, а набиралась достаточно сложным образом с помощью внешних коммутирующих устройств.
Огромный вклад в теорию и практику создания электронной вычислительной техники на начальном этапе ее развития внес один из крупнейших американских математиков Джон фон Нейман. В историю науки навсегда вошли “принципы фон Неймана”. Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ. Один из важнейших принципов – принцип хранимой программы – требует, чтобы программа закладывалась в память машины так же, как в нее закладывается исходная информация. Первая ЭВМ с хранимой программой (EDSAC) была построена в Великобритании в 1949 г.
В нашей стране вплоть до 70-х годов создание ЭВМ велось почти полностью самостоятельно и независимо от внешнего мира (да и сам этот “мир” был почти полностью зависим от США). Дело в том, что электронная вычислительная техника с самого момента своего первоначального создания рассматривалась как сверхсекретный стратегический продукт, и СССР приходилось разрабатывать и производить ее самостоятельно. Постепенно режим секретности смягчался, но и в конце 80-х годов наша страна могла покупать за рубежом лишь устаревшие модели ЭВМ (а самые современные и мощные компьютеры ведущие производители – США и Япония – и сегодня разрабатывают и производят в режиме секретности).
Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин, а первые ЭВМ сегодня являются музейной редкостью. Сама история развития вычислительной техники представляет немалый интерес, показывая тесную взаимосвязь математики с физикой (прежде всего с физикой твердого тела, полупроводников, электроникой) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники.
Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений - за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это, прежде всего их элементная база (из каких в основном элементов они построены), и такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Конечно же, деление ЭВМ на поколения в определенной мере условно. Существует немало моделей, которые по одним признакам относятся к одному, а по другим - к другому поколению. И все же, несмотря на эту условность поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники.
Первое поколение ЭВМ (1948 — 1958 гг.). Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, "Сетунь", БЭСМ-2, "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2—3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам).
ЭВМ первого поколения обладали небольшим быстродействием в несколько десятков тыс. оп./сек. В качестве внутренней памяти применялись ферритовые сердечники.
Основной недостаток этих ЭВМ – рассогласование быстродействия внутренней памяти и АЛУ и УУ за счет различной элементной базы. Общее быстродействие определялось более медленным компонентом – внутренней памятью и снижало общий эффект. Уже в ЭВМ первого поколения делались попытки ликвидировать этот недостаток путем асинхронизации работы устройств и введения буферизации вывода, когда передаваемая информация «сбрасывается» в буфер, освобождая устройство для дальнейшей работы (принцип автономии). Таким образом, для работы устройств ввода-вывода использовалась собственная память.
Существенным функциональным ограничением ЭВМ первого поколения являлась ориентация на выполнение арифметических операций. При попытках приспособления для задач анализа они оказывались неэффективными.
Языков программирования как таковых еще не было, и для кодирования своих алгоритмов программисты использовали машинные команды или ассемблеры. Это усложняло и затягивало процесс программирования. К концу 50-х годов средства программирования претерпевают принципиальные изменения: осуществляется переход к автоматизации программирования с помощью универсальных языков и библиотек стандартных программ. Использование универсальных языков повлекло возникновение трансляторов.
Программы выполнялись позадачно, т.е. оператору надо было следить за ходом решения задачи и при достижении конца самому инициировать выполнение следующей задачи.
Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.
Первая отечественная ЭВМ – МЭСМ (“малая электронно-счетная машина”) - была создана в 1951 г. под руководством Сергея Александровича Лебедева, крупнейшего советского конструктора вычислительной техники, впоследствии академика, лауреата государственных премий, руководившего созданием многих отечественных ЭВМ. Рекордной среди них и одной из лучших в мире для своею времени была БЭСМ-6 (“большая электронно-счетная машина, 6-я модель”), созданная в середине 60-х годов и долгое время бывшая базовой машиной в обороне, космических исследованиях, научно-технических исследованиях в СССР. Кроме машин серии БЭСМ выпускались и ЭВМ других серий – “Минск”, “Урал”, М-20, “Мир” и другие, созданные под руководством И.С. Брука и М.А.Карцева, Б.И. Рамеева, В.М.Глушкова, Ю.А. Базилевского и других отечественных конструкторов и теоретиков информатики.
1947-1948 г. - начало работ по созданию в Институте электроники Академии наук Украины под руководством академика Сергея Алексеевича Лебедева первой отечественной первая универсальной ламповой ЭВМ - МЭСМ (малой электронной счетной машины).
1948 г. - И. С. Брука получил диплом на изобретение ЭВМ и представил проект создания такой машины, названной М-1. В декабре И. С. Брук и Б. И. Рамеев получили авторское свидетельство на изобретение "Автоматическая цифровая электронная машина". Из-за организационных трудностей работы затянулись.
1950 г. - вступает в действие первая в СССР вычислительная электронная цифровая машина МЭСМ, самая быстродействующая тогда в Европе, а в 1951 году она официально вводится в эксплуатацию.
1952 г. - началась практическая эксплуатация ЭВМ М-1, разработанной под руководством И. С. Брук. За М-1 последовали М-2. Ее разработку выполнила группа выпускников МЭИ, возглавляемая М.А.Карцевым. Затем была выпушена машина М-3. ЭВМ М-3 занимает особое место в развитии вычислительной техники. С некоторыми модификациями она была повторена в Ереване, Минске, а также за рубежом - в Китае и Венгрии, где послужила основой для развития математического машиностроения.
1953 г. - в Академии наук СССР (Москва), вводится в эксплуатацию БЭСМ (большая электронная счетная вычислительная машина), разработанная в Институте точной механики и вычислительной техники АН СССР под руководством С.А.Лебедева. БЭСМ относится к классу цифровых вычислительных машин общего назначения, ориентированных на решение сложных задач науки и техники.
1953 г. в Москве, в СКБ Министерства машиностроения и приборостроения под руководством Ю. Я. Базилевского и Б. И. Рамеева закончена разработка серийной ЭВМ "Стрела" общего назначения.
1954 г. - начался серийный выпуск ЭВМ "Стрела". Серия оказалась очень маленькой: всего за четыре года было выпущено семь машин. Тем не менее 1954 г. - это год становления отечественной индустрии ЭВМ.
1955 г. - институт точной механики и вычислительный техники АН СССР ввел усовершенствования в Большую ЭВМ "БЭСМ", повысившие её быстродействие до 8000 операций в секунду.
1956 г. - в СССР Госкомиссии представлена ЭВМ М-3, разработанная инициативной группой (И. С. Брук, Н.Я.Матюхин, В.В.Белынский, Г.П.Лопато, Б.М.Каган, В.М.Долкарт, Б.Б.Мелик-Шахназаров).
1956 г. - разработана ЭВМ БЭСМ-2. Руководитель разработки - С.А.Лебедева
1957 г. - завершена разработка одной из наиболее совершенных чисто релейных вычислительных машин РВМ-1. Машина сконструирована и построена под руководством советского инженера И. И. Бессонова (начало постройки относится к 1954 году).
1957 г. - в Пензе под руководством Б. И. Рамеева создана одноадресная ламповая ЭВМ "Урал-1"общего назначения, ориентированных на решение инженерно-технических и планово-экономических задач. Она положилая начало целому семейству малых ЭВМ "Урал".
1958 г. - введена в эксплуатацию ЭВМ M-20 (Казань) Разработка выполнена ИТМ и ВТ совместно с СКБ-245. Руководитель: С.А.Лебедев, заместитель главного конструктора М. К. Сулим, М. Р. Шура-Бура. М-20 - цифровая электронная вычислительная машина общего назначения, ориентированная на решение сложных математических задач. Она послужила исходной моделью семейства совместимых вычислительных машин М-220 и М-222.
1958 г. - начало выпуска в Ульяновске БЭСМ-2 (С.А.Лебедев, В.А.Мельников).
1958 г. - в институте кибернетики АН УССР разработана электронная цифровая вычислительная машина “КИЕВ”, предназначенная для решения широкого круга научных и инженерных задач.
1958 г. - в Ереване под руководством Ф.Т. Саркисяна (Б.Б.Мелик-Шахназаров) создана ЭВМ "Раздан".
1958 г. - под руководством Н.П. Брусенцова в вычислительном центре Московского университета была создана и запущена в производство первая и единственная в мире троичная ЭВМ "Сетунь". “Сетунь” - малая цифровая вычислительная машина, предназначенная для решения научно-технических и экономических задач средней сложности. Серийно выпускалась 1962-1964.