- 1. Представление об антропогенной системе. Антропогенные факторы.
Природная система включает в себя еще ряд подсистем “вертикальной” структуры: лито- , гидро- , и биосистемы. Антропогенная система делиться на подсистемы в основном по “горизонтальному” принципу: производственную, инфраструктурную и градостроительную.
Если первая (природная) характеризуется непрерывностью своих подсистем, то вторая (антропогенная) прерывна. Вследствие этой “прерывности” условия жизни людей в пределах города различны и во многом зависят от искусственных экологических микросистем: зданий и сооружений жилой, промышленной и коммунально-складской застройки”. Антропогенная система в результате своего функционирования и развития оказывает увеличивающееся отрицательное на экологическую ситуацию внутри микросистем, ухудшая экологическую обстановку. Чем крупнее город, тем больший объем природных ресурсов он потребляет и тем больше не занятых им территорий необходимо вовлекать в процесс функционирования городской системы.
Антропогенныйфактор- непосредственное воздействие человека на организмы или воздействие на организмы через изменение человеком их среды обитания. Различают четыре основныхантропогенныхфактора:
- изменение структуры земной поверхности;
- изменение состава биосферы, круговорота и баланса входящего в нее вещества;
- изменение энергетического и теплового баланса отдельных участков и регионов;
- изменения, вносимые в биоту.
- 2. Естественный отбор и его формы.
Естественный отбор (natural selection) - основной, согласно концепции дарвинизма, движущий фактор эволюции живых организмов. Предпосылки естественного отбора – наследственная изменчивость и борьба за существование; следствие естественного отбора – увеличение разнообразия форм и постепенное усложнение организмов; генетическая основа естественного отбора – избирательное участие отдельных генотипов в передаче генов потомству популяции.
Естественный отбор всегда ведет к увеличению средней приспособленности популяций. Изменение внешних условий может приводить к изменению приспособленности отдельных генотипов. В ответ на эти изменения, естественный отбор, используя огромный запас генетического разнообразия по множеству разных признаков, ведет к значительным сдвигам в генетической структуре популяции. Если внешняя среда меняется постоянно в определенном направлении, то естественный отбор меняет генетическую структуру популяции таким образом, чтобы ее приспособленность в этих меняющихся условиях оставалась максимальной. При этом меняются частоты отдельных аллелей в популяции. Меняется и средние значения приспособительных признаков в популяциях. В ряду поколений прослеживается их постепенное смещение в определенном направлении. Такую форму отбора называют движущим отбором.
Классическим примером движущего отбора является эволюция окраски у березовой пяденицы. Окраска крыльев этой бабочки имитирует окраску покрытой лишайниками коры деревьев, на которых она проводит светлое время суток. Очевидно, такая покровительственная окраска сформировалась за многие поколения предшествующей эволюции. Однако с началом индустриальной революции в Англии это приспособление стало терять свое значение. Загрязнение атмосферы привело к массовой гибели лишайников и потемнению стволов деревьев. Светлые бабочки на темном фоне стали легко заметны для птиц. Начиная с середины XIX века, в популяциях березовой пяденицы стали появляться мутантные темные (меланистические) формы бабочек. Частота их быстро возрастала. К концу XIX века некоторые городские популяции березовой пяденицы почти целиком состояли из темных форм, в то время как в сельских популяциях по-прежнему преобладали светлые формы. Это явление было названоиндустриальныммеланизмом.Ученые обнаружили, что в загрязненных районах птицы чаще поедают светлые формы, а в чистых – темные. Введение ограничений на загрязнение атмосферы в 1950-х годах привело к тому, что естественный отбор вновь изменил направление, и частота темных форм в городских популяциях начала снижаться. В наше время они почти так же редки, как и до начала индустриальной революции.
Движущий отбор приводит генетический состав популяций в соответствие изменениям во внешней среде так, чтобы средняя приспособленность популяций была максимальной. На острове Тринидад рыбки гуппи обитают в разных водоемах. Множество тех, что живут в низовьях речек и в прудах гибнет в зубах хищных рыб. В верховьях жизнь для гуппи гораздо спокойней – там мало хищников. Эти различия во внешних условиях привели к тому, что «верховые» и «низовые» гуппи эволюционировали в разных направлениях. «Низовые», находящиеся под постоянной угрозой истребления, начинают размножаться в более раннем возрасте и производят множество очень мелких мальков. Шанс на выживание каждого из них очень невелик, но их очень много и некоторые из них успевают размножиться. «Верховые» достигают половой зрелости позднее, их плодовитость ниже, но потомки крупнее. Когда исследователи переносили «низовых» гуппи в незаселенные водоемы в верховьях речек, они наблюдали постепенное изменение типа развития рыбок. Через 11 лет после перемещения они стали значительно крупнее, вступали в размножение позже и производили меньшее количество, но более крупных потомков.
Скорость изменения частот аллелей в популяции и средних значений признаков при действии отбора зависит не только от интенсивности отбора, но и от генетической структуры признаков, по которым идет обор.
Отбор против рецессивных мутаций оказывается значительно менее эффективным, чем против доминантных. В гетерозиготе рецессивный аллель не проявляется в фенотипе и поэтому ускользает от отбора. Используя уравнение Харди-Вейнберга можно оценить скорость изменения частоты рецессивного аллеля в популяции в зависимости от интенсивности отбора и начального соотношения частот. Чем ниже частота аллеля, тем медленнее происходит его элиминация. Для того чтобы снизить частоту рецессивной летали от 0,1 до 0,05 нужно всего 10 поколений; 100 поколений - чтобы уменьшить ее от 0,01 до 0,005 и 1000 поколений - от 0,001 до 0,0005.
Движущая форма естественного отбора играет решающую роль в приспособлении живых организмов к меняющимся во времени внешним условиям. Она же обеспечивает широкое распространение жизни, ее проникновение во все возможные экологические ниши. Ошибочно думать, однако, что в стабильных условиях существования естественный отбор прекращается. В таких условиях он продолжает действовать в форме стабилизирующего отбора.
Стабилизирующий отбор сохраняет то состояние популяции, которое обеспечивает ее максимальную приспособленность в постоянных условиях существования. В каждом поколении удаляются особи, отклоняющиеся от среднего оптимального значения по приспособительным признакам.
Описано множество примеров действия стабилизующего отбора в природе. Например, на первый взгляд кажется, что наибольший вклад в генофонд следующего поколения должны вносить особи с максимальной плодовитостью. Однако наблюдения над природными популяциями птиц и млекопитающих показывают, что это не так. Чем больше птенцов или детенышей в гнезде, тем труднее их выкормить, тем каждый из них меньше и слабее. В результате наиболее приспособленными оказываются особи со средней плодовитостью. Отбор в пользу средних значений был обнаружен по множеству признаков. У млекопитающих новорожденные с очень низким и очень высоким весом чаше погибают при рождении или в первые недели жизни, чем новорожденные со средним весом. Учет размера крыльев у птиц, погибших после бури, показал, что большинство из них имели слишком маленькие или слишком большие крылья. И в этом случае наиболее приспособленными оказались средние особи.
В чем причина постоянного появления малоприспособленных форм в постоянных условиях существования? Почему естественный отбор не способен раз и навсегда очистить популяцию от нежелательных уклоняющихся форм? Причина не только и не столько в постоянном возникновении все новых и новых мутаций. Причина в том, что часто наиболее приспособленными оказываются гетерозиготные генотипы. При скрещивании они постоянно дают расщепление и в их потомстве появляются гомозиготные потомки со сниженной приспособленностью. Это явление получило название сбалансированный полиморфизм.
Стабилизирующий отбор является механизмом накопления изменчивости в природных популяциях. Первым на эту особенность стабилизирующего отбора обратил внимание выдающийся ученый И.И.Шмальгаузен. Он показал, что даже в стабильных условиях существования не прекращается ни естественный отбор, ни эволюция. Даже оставаясь фенотипически неизменной, популяция не перестает эволюционировать. Её генетический состав постоянно меняется. Стабилизирующий отбор создает такие генетические системы, которые обеспечивают формирование сходных оптимальных фенотипов на базе самых разнообразных генотипов. Такие генетические механизмы как доминирование, эпистаз, комплементарное действие генов, неполная пенетрантность и другие средства скрывания генетической изменчивости обязаны своим существованием стабилизирующему отбору.
Здесь важно отметить, что постоянство условий не означает их неизменности. В течение года экологические условия регулярно меняются. Стабилизирующий отбор адаптирует популяции к этим сезонным изменениям. К ним приурочиваются циклы размножения, таким образом, чтобы молодняк рождался в тот сезон года, когда ресурсы пищи максимальны. Все отклонения от этого оптимального, воспроизводимого из года в год цикла, устраняются стабилизирующим отбором. Потомки, родившиеся слишком рано, гибнут от бескормицы, слишком поздно – не успевают подготовиться к зиме. Как животные и растения узнают о наступлении зимы? По наступлению заморозков? Нет, это не слишком надежный указатель. Кратковременные флуктуации температуры могут быть очень обманчивы. Если в какой-то год потеплело раньше обычного, то это вовсе не значит, что пришла весна. Те, кто слишком поспешно среагируют на этот ненадежный сигнал, рискуют остаться без потомства. Лучше дождаться более надежного знака весны – увеличения светового дня. У большинства видов животных, именно этот сигнал запускает механизмы сезонных изменений жизненно важных функций: циклы размножения, линьки, миграций и др. И.И. Шмальгаузен убедительно показал, что эти универсальные адаптации возникают в результате стабилизирующего отбора.
Таким образом, стабилизирующий отбор, отметая отклонения от нормы, активно формирует генетические механизмы, которые обеспечивают стабильное развитие организмов и формирование оптимальных фенотипов на базе разнообразных генотипов. Он обеспечивает устойчивое функционирование организмов в широком спектре привычных для вида колебаний внешних условий.
Действием дизруптивного отбора объясняют образование сезонных рас у некоторых сорных растений. Было показано, что сроки цветения и созревания семян у одного из видов таких растений - погремка лугового- растянуты почти на все лето, причем большая часть растений цветет и плодоносит в середине лета. Однако на сенокосных лугах получают преимущества те растения, которые успевают отцвести и дать семена до покоса, и те, которые дают семена в конце лета, после покоса. В результате образуются две расы погремка – ранне- и позднецветущая.
Половой отбор.У самцов многих видов обнаруживаются явно выраженные вторичные половые признаки, которые на первый взгляд кажутся неадаптивными: хвост павлина, яркие перья райских птиц и попугаев, алые гребни петухов, феерические цвета тропических рыбок, песни птиц и лягушек, и т.п. Многие из этих особенностей осложняют жизнь их носителей, делают их легко заметными для хищников. Казалось бы, эти признаки не дают никаких преимуществ их носителям в борьбе за существование, и тем не менее они очень широко распространены в природе. Какую роль в их возникновении и распространении сыграл естественный отбор? Выживание организмов является важным, но не единственным компонентом естественного отбора. Другим важнейшим компонентом является привлекательность для особей противоположного пола. Ч.Дарвин назвал это явление половым отбором. Впервые он упомянул эту форму отбора в «Происхождении видов», а затем подробно проанализировал ее в книге «Происхождение человека и половой отбор». Он считал, что «эта форма отбора определяется не борьбой за существование в отношениях органических существ между собою или с внешними условиями, но соперничеством между особями одного пола, обычно самцами, за обладание особями другого пола».
Половой отбор - это естественный отбор на успех в размножении. Признаки, которые снижают жизнеспособность их носителей, могут возникать и распространяться, если преимущества, которые они дают в успехе размножения значительно выше, чем их недостатки для выживания. Самец, который живет недолго, но нравится самкам и поэтому производит много потомков, имеет гораздо более высокую совокупную приспособленность, чем тот, что живет долго, но оставляет мало потомков.
- 3. Популяция: понятие, роль в природе.
Популяция — совокупность особей или клеток одного вида, длительно занимающая определенное пространство и воспроизводящая себя в течение большого числа поколений.
Показатели структуры популяций. Как первая надорганизмен-ная биологическая система, популяция обладает определенной структурой и свойствами. Структуру популяции отражают такие ее показатели, как численность и распределение особей в пространстве, соотношение групп по полу и возрасту, их морфологические, поведенческие и другие особенности.
Численность — общее количество особей в популяции. Эта величина характеризуется широким диапазоном изменчивости, однако она не может быть ниже некоторых пределов. Сокращение численности по сравнению с этими пределами может привести к вымиранию популяции. Полагают", что если численность популяции меньше нескольких сотен особей, то любые случайные причины (пожар, наводнение, засуха, обильные снегопады, сильные морозы и т. д.) могут сократить ее настолько, что оставшиеся особи не смогут встречаться и оставить потомство. Рождаемость перестанет покрывать естественную убыль, и оставшиеся особи в течение сравнительно короткого времени вымрут.
Плотность — число особей на единицу площади или объема. При увеличении численности плотность популяции, как правило, возрастает; она остается прежней лишь в случае ее расселения и расширения ареала. У некоторых животных плотность популяции регулируется сложными поведенческими и физиологическими механизмами.
Пространственная структура популяции характеризуется особенностями размещения особей на занимаемой территории. Она определяется свойствами местообитания и биологическими особенностями вида. Наряду со случайным и равномерным распределением в природе наиболее часто встречается групповое распределение. Группа животных, прилагая совместные усилия, может легче защищаться от хищников, искать и добывать корм. Жизнь в семьях, стадах, колониях, гаремах приводит также к групповому распределению особей. Пространственная структура может изменяться во времени; она зависит от сезона года, от численности популяции, возрастной и половой структуры и т. д.
Половая структура отражает определенное соотношение мужских и женских особей в популяции. Генетический механизм определения пола обеспечивает расщепление потомства по полу в соотношении 1: 1. В силу разной жизнеспособности мужских и женских особей это первичное соотношение полов при оплодотворении часто заметно отличается от вторичного (при рождении — у млекопитающих) и тем более от третичного, характерного для половозрелых особей. Например, в популяциях человека вторичное соотношение полов составляет 100 девочек/106 мальчиков; к 16—18 годам это соотношение выравнивается и становится равным 1:1, к 50 годам— 100 женщин/85 мужчин, а к 80 годам соотношение по полу становится 2:1 (100 женщин/ 50 мужчин).
Изменение половой структуры популяции отражается на ее роли в экосистеме, так как самцы и самки многих видов отличаются друг от друга по характеру питания, ритму жизни, поведению и др. Так, самки некоторых видов комаров, клещей и мошек являются кровососущими, в то время как самцы питаются соком растений или нектаром. Преобладание доли самок над самцами обеспечивает более интенсивный рост популяции.
Возрастная структура отражает соотношение различных возрастных групп в популяциях, зависящее от продолжительности жизни, времени наступления половой зрелости, числа потомков в помете, количества потомств за сезон и др. Если какая-либо возрастная группа сокращается либо увеличивается, это сказывается на общей численности популяции. Например, массовое истребление крупных половозрелых особей в результате промысла приводит к резкому снижению численности популяции вследствие слабого пополнения ее молодыми особями. Поэтому присутствие в популяции большого количества особей младших возрастных групп свидетельствует о ее благополучии. Если же в популяции преобладают старые особи, можно со всей определенностью сказать, что данная популяция завершает свое существование.
Экологическая структура свидетельствует об отношении различных групп организмов к условиям окружающей среды. Например, особи одной популяции растений различаются рядом признаков: по размерам, количеству побегов, цветков, плодов, семян и т. п. Кроме того, разные особи этой же популяции зацветают неодновременно, что способствует более полному их опылению (при одновременном и кратковременном цветении насекомые могут не успеть опылить все цветки). У такой популяции меньший риск остаться без семян, например в случае кратковременных заморозков (замерзнет лишь часть цветков).
Теоретически любая популяция способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды (ограниченность ресурсов, болезни, хищники и т. п.). В таком гипотетическом случае скорость роста популяции будет зависеть только от величины биотического потенциала, свойственного каждому конкретному виду. Биотический потенциал отражает теоретически возможное число потомков от одной пары (или одной особи) за определенный промежуток времени, например за весь жизненный цикл или за год.
При увеличении плотности популяции обычно наблюдается замедление роста численности, поскольку популяция оказывается в условиях с ограниченными ресурсами. Общие изменения численности популяции определяются такими процессами, как рождаемость, смертность и миграция особей.
Миграции — закономерные перемещения животных между существенно различными, пространственно разобщенными средами обитания. Подобные переселения вызываются изменением условий существования в местах обитания или изменением требований животного к этим условиям на разных стадиях развития. Массовое перемещение особей между популяциями может изменить их структуру и основные свойства (предотвратить гибель популяции, находящейся на грани вымирания, или, наоборот, привести ее к резкому сокращению).
Миграции (суточные, сезонные) позволяют организмам использовать оптимальные условия среды в таких местах, где их постоянное проживание невозможно. Они приводят к освоению новых биотопов, расширению общего ареала вида, к обмену особей между популяциями, увеличивают единство и общую устойчивость вида, способствуют успеху в борьбе за существование.
При отсутствии миграции изменение численности популяции зависит от соотношения величины рождаемости и смертности. Если величина рождаемости выше смертности, то численность популяции будет возрастать, и, наоборот, снижаться, если смертность превысит рождаемость. Таким образом, численность популяций в природных условиях постоянно меняется, поскольку меняются условия среды обитания. Амплитуда и период этих колебаний зависят от степени изменчивости окружающей среды, а также от биологических особенностей конкретного вида.
Важная роль в регуляции численности и плотности популяции принадлежит поведенческим факторам. Другая форма поведения — защита индивидуального участка (территориальности) — также направлена на регулирование численности. Часто почти вся территория, занимаемая популяцией, поделена на индивидуальные участки, которые обозначаются разными способами (секретом пахучих желез, царапинами на деревьях, пением самцов птиц, мочой и т. п.). Мечение и охрана участков, не допускающие размножения на них «чужих» особей, приводит к рациональному использованию территории. Избыточная часть популяции при этом не размножается или вынуждена выселяться за пределы занятого пространства.
Существует ряд других исторически сложившихся механизмов, задерживающих рост популяций и обеспечивающих тем самым их устойчивость. К ним относятся химические взаимодействия особей (например, головастики выделяют в воду вещества, которые задерживают рост других головастиков); изменения в физиологии и поведении при увеличении плотности, что приводит к проявлению инстинктов массовой миграции; распространение заболеваний (вероятность передачи инфекций возрастает с ростом плотности популяции) и др.
Таким образом, благодаря множеству механизмов размах всех суточных, сезонных и годовых изменений численности и уровня плотности популяций, как правило, меньше теоретически возможного, соответствующего реализации всего биотического потенциала. Перенаселенность всегда неблагоприятна для любого вида, так как может привести к быстрому подрыву ресурсов среды, нехватке пищи, убежищ, пространства, что неминуемо повлечет за собой общее ослабление популяций.
- 4. Термофильные и термофобные организмы.
Термофильные организмы (от термо... и греч. philéo — люблю), термофилы, организмы, обитающие при температуре, превышающей 45 °С (гибельной для большинства живых существ).
Таковы некоторые рыбы, представители различных беспозвоночных (червей, насекомых, моллюсков), разнообразные микроорганизмы (простейшие, бактерии, актиномицеты, грибы, водоросли) и некоторые папоротникообразные и цветковые растения.
Местообитание Т. о. — горячие источники (где температура достигает 70 °С), термальные воды, верхние слои сильно прогреваемой солнцем почвы, а также разогревающиеся в результате жизнедеятельности термогенных бактерий органического вещества (кучи влажного сена и зерна, торф, навоз и т. п.).
Т. о., в широком смысле слова — обитатели тропиков (исключая морские глубины и высокогорья), а также сапрофиты и паразиты, обитающие в теле гомойотермных (теплокровных) животных приt35—40 °С.
Некоторые Т. о. в умеренных и высоких широтах могут рассматриваться как реликты более тёплых эпох, когда они имели широкое распространение.
Термофобные организмы (от термо... и греч. phóbos — страх, боязнь), разнообразные растительные и животные организмы, способные нормально существовать и размножаться только при относительно низких температурах (обычно не выше 10 °С), а также те организмы, для которых такие температурные условия являются оптимальными.
К Т. о. относится большинство обитателей глубин океанов, морей, крупных озёр, а также обитатели водоёмов и суши районов с холодным климатом (Арктики, Антарктики, высокогорий). Термофобные микроорганизмы чаще называются психрофильными микроорганизмами, а термофобные растения — психрофитами.
- 5. Загрязнение почвы.
Химическое загрязнение почвы – изменение химического состава почвы, возникшее под прямым или косвенным воздействием фактора землепользования (промышленного, сельскохозяйственного, коммунального), вызывающее снижение ее качества и возможную опасность для здоровья населения. |
Основным критерием гигиенической оценки загрязнения почв химическими веществами является предельно допустимая концентрация (ПДК) или ориентировочно допустимая концентрация (ОДК) химических веществ в почве.
Предельно допустимая концентрация химического вещества в почве представляет собой комплексный показатель безвредного для человека содержания химических веществ в почве, так как используемые при ее обосновании критерии отражают возможные пути воздействия загрязнителя на контактирующие среды, биологическую активность почвы и процессы ее самоочищения. Обоснование ПДК химических веществ в почве базируется на 4 основных показателях вредности, устанавливаемых экспериментально:
- транслокационный характеризует переход вещества из почвы в растение;
- миграционный водный характеризует способность перехода вещества из почвы в грунтовые воды и водоисточники;
- миграционный воздушный характеризует переход вещества из почвы в атмосферный воздух;
- общесанитарный характеризует влияние загрязняющего вещества на самоочищающую способность почвы и ее биологическую активность.
При этом каждый из путей воздействия оценивается количественно с обоснованием допустимого уровня содержания вещества по каждому показателю вредности. Наименьший из обоснованных уровней содержания является лимитирующим и принимается за ПДК.
Биологическое загрязнение почвы – составная часть органического загрязнения, обусловленного диссеминацией (распространением) возбудителей инфекционных и инвазионных болезней, а также вредными насекомыми и клещами, переносчиками возбудителей болезней человека, животных и растений.
- 6. Растения-биоиндикаторы.
Биоиндикаторы - организмы, присутствие, количество или особенности развития которых служат показателями естественных процессов, условий или антропогенных изменений среды. В их качестве могут быть использованы также сообщества организмов (биоценозы).
Дикорастущие растения, являющиеся биоиндикаторами почв
Русское название |
Латинское название |
Качество почвы |
Бодяк полевой |
Cirium arvense |
Плодородная |
Хвощ полевой |
Equisetum arvense |
Влажная |
Фиалка трехцветная |
Viola tricolor |
Бедная известью, кислая |
Крапива двудомная |
Urtica dioica |
Плодородная, богатая азотом |
Галинсога мелкоцветковая |
Galinsoqa parviflora |
Богатая азотом |
Сныть обыкновенная |
Aeqopodium podaqria |
Влажная, рыхлая, плодородная |
Лядвенец рогатый |
Lotus corniculatus |
Сухая, скудная |
Мать-и-мачеха обыкновенная |
Tussilaqo farfara |
Плотная |
Мак-самосейка |
Papaver rhoeas |
Богатая известью |
Кровохлебка малая |
Sanquisorba minor |
Сухая, скудная |
Подмаренник цепкий |
Galium aparine |
Плодородная |
Лютик ползучий |
Ranunculus repens |
Влажная, плодородная |
Живучка ползучая |
Ajuqa reptans |
Влажная, плодородная |
Одуванчик лекарственный |
Taraxacum officinale |
Плодородная |
Пырей ползучий |
Aqropyrum repens |
Неухоженная, плотная |
Щавель обыкновенный |
Rumex acetosa |
Щелочная |
Кислица ключевая |
Oxalis fontana |
Влажная, бедная известью |
Лютик-чистяк |
Ranunculus ficaria |
Влажная |
Горчица полевая |
Sinapis arvensis |
С большим содержанием извести |
Подорожник ланцетный |
Plantaqo lanceolata |
Плодородная, сухая |
Звездчатка средняя |
Stellaria media |
Плодородная |
- 7. Правовые формы возмещения вреда природной среде.
Возмещение вреда окружающей природной среде – выплата специальным экономическим фондам денежной компенсации, которая производится добровольно либо по решению суда, арбитражного суда в соответствии с утвержденными в установленном порядке таксами и методиками исчисления ущерба, а при их отсутствии - по фактическим затратам на восстановление нарушенного состояния окружающей среды с учетом понесенных убытков, в том числе упущенной выгоды.
Вред окружающей природной среде представляет собой реальные и предполагаемые, количественные и качественные потери в ней (уничтожение популяций животных или отдельных животных, гибель лесных массивов, истощение вод и т.п.). Экологическим правонарушением вред может быть причинен здоровью людей и их имуществу, другим материальным ценностям.
Юридические и физические лица, причинившие вред окружающей среде в результате ее загрязнения, истощения, порчи, уничтожения, нерационального использования природных ресурсов, деградации и разрушения естественных экологических систем, природных комплексов и природных ландшафтов и иного нарушения законодательства в области охраны окружающей среды, обязаны возместить его в полном объеме в соответствии с законодательством.
При возмещении вреда, причиненного окружающей природной среде, применяются обычные формы возмещения вреда – натуральная и стоимостная.
К натуральным формам возмещения можно отнести меры по восстановлению природного ресурса до исходного состояния на момент нанесения вреда, предоставление равноценного природного ресурса взамен утраченного или выведенного из хозяйственного оборота, строительство и передача истцу сооружений по воспроизводству и восстановлению утраченного. Однако согласно ст. 87 Закона "Об охране окружающей природной среды" возмещение вреда в натуре возможно только с согласия сторон, участвующих в деле. В случае возмещения вреда правонарушителем в добровольном порядке в натуральной форме заключаются соответствующие договоры и (или) соглашения, регламентирующие порядок, условия, сроки и объемы возмещения причиненного вреда.
К стоимостным формам возмещения вреда можно отнести предоставление финансовых средств для восстановления состояния окружающей среды до исходного к моменту причинения вреда, финансирование мероприятий по воспроизводству природных ресурсов, возмещение истцу иных убытков включая упущенную выгоду. Возможен смешанный вариант, при котором в пользу потерпевшего часть средств компенсируется в денежной форме, а часть – путем выполнения восстановительных работ. Если ответчик уклоняется от выполнения возложенных судом обязанностей, суд, арбитражный суд по иску потерпевшей стороны принимает решение о взыскании ущерба в денежной форме, включая убытки вызванные неисполнением решения суда.